Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks

被引:32
|
作者
Barraza, Joaquin Figueroa [1 ]
Droguett, Enrique Lopez [2 ,3 ]
Martins, Marcelo Ramos [1 ]
机构
[1] Univ Sao Paulo, Dept Naval Architecture & Ocean Engn, LabRisco Anal Evaluat & Risk Management Lab, BR-05508030 Sao Paulo, Brazil
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Garrick Inst Risk Sci, Los Angeles, CA 90095 USA
关键词
feature selection; deep learning; deep neural networks; prognostics and health management; interpretable AI; RIDGE REGRESSION; PREDICTION; REPRESENTATIONS; CLASSIFICATION; ENSEMBLE; MODEL;
D O I
10.3390/s21175888
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the last five years, the inclusion of Deep Learning algorithms in prognostics and health management (PHM) has led to a performance increase in diagnostics, prognostics, and anomaly detection. However, the lack of interpretability of these models results in resistance towards their deployment. Deep Learning-based models fall within the accuracy/interpretability tradeoff, which means that their complexity leads to high performance levels but lacks interpretability. This work aims at addressing this tradeoff by proposing a technique for feature selection embedded in deep neural networks that uses a feature selection (FS) layer trained with the rest of the network to evaluate the input features' importance. The importance values are used to determine which will be considered for deployment of a PHM model. For comparison with other techniques, this paper introduces a new metric called ranking quality score (RQS), that measures how performance evolves while following the corresponding ranking. The proposed framework is exemplified with three case studies involving health state diagnostics and prognostics and remaining useful life prediction. Results show that the proposed technique achieves higher RQS than the compared techniques, while maintaining the same performance level when compared to the same model but without an FS layer.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Interpretable Deep Convolutional Neural Networks via Meta-learning
    Liu, Xuan
    Wang, Xiaoguang
    Matwin, Stan
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [22] Learning Interpretable BEV Based VIO without Deep Neural Networks
    Chen, Zexi
    Du, Haozhe
    Xu, Xuecheng
    Xiong, Rong
    Liao, Yiyi
    Wang, Yue
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1289 - 1298
  • [23] Distribution-dependent feature selection for deep neural networks
    Xuebin Zhao
    Weifu Li
    Hong Chen
    Yingjie Wang
    Yanhong Chen
    Vijay John
    Applied Intelligence, 2022, 52 : 4432 - 4442
  • [24] Nonparametric feature selection by random forests and deep neural networks
    Mao, Xiaojun
    Peng, Liuhua
    Wang, Zhonglei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [25] Distribution-dependent feature selection for deep neural networks
    Zhao, Xuebin
    Li, Weifu
    Chen, Hong
    Wang, Yingjie
    Chen, Yanhong
    John, Vijay
    APPLIED INTELLIGENCE, 2022, 52 (04) : 4432 - 4442
  • [26] Feature Selection for Deep Neural Networks in Cyber Security Applications
    Davis, Alexander
    Gill, Sumanjit
    Wong, Robert
    Tayeb, Shahab
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 82 - 88
  • [27] Deep learning for prognostics and health management: State of the art, challenges, and opportunities
    Rezaeianjouybari, Behnoush
    Shang, Yi
    MEASUREMENT, 2020, 163
  • [28] Deep-gKnock: Nonlinear group-feature selection with deep neural networks
    Zhu, Guangyu
    Zhao, Tingting
    NEURAL NETWORKS, 2021, 135 : 139 - 147
  • [29] A Deep Learning Framework for Automated Transfer Learning of Neural Networks
    Balaiah, Thanasekhar
    Jeyadoss, Timothy Jones Thomas
    Thirumurugan, Sainee
    Ravi, Rahul Chander
    2019 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC 2019), 2019, : 428 - 432
  • [30] A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting
    Fang, Lei
    He, Bin
    APPLIED ENERGY, 2023, 348