Evaluation of cost functions for stereo matching

被引:0
|
作者
Hirschmueller, Heiko [1 ]
Scharstein, Daniel [2 ]
机构
[1] DLR, Inst Robot & Mechatron Oberpfaffenhofen, Oberpfaffenhofen, Germany
[2] Middlebury Coll, Middlebury, VT USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stereo correspondence methods rely on matching costs for computing the similarity of image locations. In this paper we evaluate the insensitivity of different matching costs with respect to radiometric variations of the input images. We consider both pixel-based and window-based variants and measure their performance in the presence of global intensity changes (e.g., due to gain and exposure differences), local intensity changes (e.g., due to vignetting, non-Lambertian surfaces, and varying lighting), and noise. Using existing stereo datasets with ground-truth disparities as well as six new datasets taken under controlled changes of exposure and lighting, we evaluate the different costs with a local, a semi-global, and a global stereo method.
引用
收藏
页码:2134 / +
页数:2
相关论文
共 50 条
  • [21] Sparse Cost Volume for Efficient Stereo Matching
    Lu, Chuanhua
    Uchiyama, Hideaki
    Thomas, Diego
    Shimada, Atsushi
    Taniguchi, Rin-ichiro
    REMOTE SENSING, 2018, 10 (11)
  • [22] Hybrid cost aggregation for dense stereo matching
    Ming Yao
    Wenbin Ouyang
    Bugao Xu
    Multimedia Tools and Applications, 2020, 79 : 23189 - 23202
  • [23] Accuracy and robustness evaluation in stereo matching
    Duc Minh Nguyen
    Hanca, Jan
    Lu, Shao-Ping
    Schelkens, Peter
    Munteanu, Adrian
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXIX, 2016, 9971
  • [24] Adaptive epipolar distance transform and adaptive matching cost for stereo matching
    Zhang, Yakun
    Li, Haibin
    Zhang, Wenming
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (08) : 1170 - 1177
  • [25] Stereo Matching with Improved Radiometric Invariant Matching Cost and Disparity Refinement
    Shi, Jinjin
    Fu, Fangfa
    Wang, Yao
    Xu, Weizhe
    Wang, Jinxiang
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 61 - 73
  • [26] Stereo Matching Algorithm Based on Joint Matching Cost and Adaptive Window
    Chai, Yu
    Cao, Xiaojing
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 442 - 446
  • [27] Using convolutional neural network for matching cost computation in stereo matching
    Denisov, Aleksei
    Wang, Yan
    Zhdanov, Andrey
    Bykovskii, Sergei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [28] SCV-STEREO: LEARNING STEREO MATCHING FROM A SPARSE COST VOLUME
    Wang, Hengli
    Fan, Rui
    Liu, Ming
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3203 - 3207
  • [29] EVALUATION OF PENALTY FUNCTIONS FOR SEMI-GLOBAL MATCHING COST AGGREGATION
    Banz, Christian
    Pirsch, Peter
    Blume, Holger
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 1 - 6
  • [30] Cross-Scale Cost Aggregation for Stereo Matching
    Zhang, Kang
    Fang, Yuqiang
    Min, Dongbo
    Sun, Lifeng
    Yang, Shiqiang
    Yan, Shuicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 965 - 976