Recurrent Deep Attention Network for Person Re-Identification

被引:4
|
作者
Wang, Changhao [1 ]
Zhou, Jun [2 ]
Duan, Xianfei [2 ]
Zhang, Guanwen [1 ]
Zhou, Wei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[2] CNPC Logging Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/ICPR48806.2021.9412947
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification (re-id) is an important task in video surveillance. It is challenging due to the appearance of person varying a wide range across non-overlapping camera views. Recent years, attention-based models are introduced to learn discriminative representation. In this paper, we consider the attention selection in a natural way as like human moving attention on different parts of the visual field for person re-id. In concrete, we propose a Recurrent Deep Attention Network (ROAN) with an attention selection mechanism based on reinforcement learning. The proposed RDAN aims to progressively observe the identity-sensitive regions to build up the representation of individuals. Extensive experiments on three person reid benchmarks Market-1501, DukeMTMC-reID, and UMW-NP demonstrate the proposed method can achieve competitive performance.
引用
收藏
页码:4276 / 4281
页数:6
相关论文
共 50 条
  • [21] Semantic guidance attention network for occluded person re-identification
    Ren X.
    Zhang D.
    Bao X.
    Li B.
    Tongxin Xuebao/Journal on Communications, 2021, 42 (10): : 106 - 116
  • [22] Dual semantic interdependencies attention network for person re-identification
    Yang, Shengrong
    Hu, Haifeng
    Chen, Dihu
    Su, Tao
    ELECTRONICS LETTERS, 2020, 56 (25) : 1411 - 1413
  • [23] A part-based attention network for person re-identification
    Zhong, Weilin
    Jiang, Linfeng
    Zhang, Tao
    Ji, Jinsheng
    Xiong, Huilin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (31-32) : 22525 - 22549
  • [24] An efficient feature pyramid attention network for person re-identification
    Luo, Qian
    Shao, Jie
    Dang, Wanli
    Wang, Chao
    Cao, Libo
    Zhang, Tao
    IMAGE AND VISION COMPUTING, 2024, 145
  • [25] Reverse Pyramid Attention Guidance Network for Person Re-Identification
    Liu, Jiang
    Bai, Wei
    Hui, Yun
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2024, 18 (01)
  • [26] Curriculum Enhanced Supervised Attention Network for Person Re-Identification
    Zhu, Xiaoguang
    Qian, Jiuchao
    Wang, Haoyu
    Liu, Peilin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1665 - 1669
  • [27] Complementation-Reinforced Attention Network for Person Re-Identification
    Han, Chuchu
    Zheng, Ruochen
    Gao, Changxin
    Sang, Nong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) : 3433 - 3445
  • [28] Mixed Attention-Aware Network for Person Re-identification
    Sun, Wenchen
    Liu, Fang'ai
    Xu, Weizhi
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 120 - 123
  • [29] A part-based attention network for person re-identification
    Weilin Zhong
    Linfeng Jiang
    Tao Zhang
    Jinsheng Ji
    Huilin Xiong
    Multimedia Tools and Applications, 2020, 79 : 22525 - 22549
  • [30] Attention-Aware Adversarial Network for Person Re-Identification
    Shen, Aihong
    Wang, Huasheng
    Wang, Junjie
    Tan, Hongchen
    Liu, Xiuping
    Cao, Junjie
    APPLIED SCIENCES-BASEL, 2019, 9 (08):