A NEW CLASS OF CONTRACTIVE MAPPINGS

被引:8
|
作者
Popescu, O. [1 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu 50, Brasov, Romania
关键词
enriched contraction; Gornicki mapping; approximating fixed point sequence;
D O I
10.1007/s10474-021-01154-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of Picard operators which includes the class of enriched contractions, enriched Kannan mappings, enriched Chatterjea mappings, and prove some fixed point theorems for these mappings. Some examples will illustrate the generality of our results.
引用
收藏
页码:570 / 579
页数:10
相关论文
共 50 条
  • [41] PERIODIC POINTS AND CONTRACTIVE MAPPINGS
    HSIEH, TT
    TAN, KK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (02): : 209 - 211
  • [42] ON THE EQUIVALENCE PRINCIPLE FOR CONTRACTIVE MAPPINGS
    DING, XP
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1984, 5 (02) : 145 - 152
  • [43] Contractive Mappings on Unbounded Sets
    Simeon Reich
    Alexander J. Zaslavski
    Set-Valued and Variational Analysis, 2018, 26 : 27 - 47
  • [44] NOTE ON CONTRACTIVE MAPPINGS AND GENERALIZATIONS
    KUBIACZYK, I
    RZEPECKI, B
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (09): : 743 - 747
  • [45] MAPPINGS CONTRACTIVE IN SENSE OF KANNAN
    JANOS, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 61 (01) : 171 - 175
  • [46] SOME THEOREMS ON CONTRACTIVE MAPPINGS
    BAILEY, DF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (161P): : 101 - &
  • [47] ON THE EQUIVALENCE PRINCIPLE FOR CONTRACTIVE MAPPINGS
    丁协平
    ChineseAnnalsofMathematics, 1984, (02) : 145 - 152
  • [48] Generalized Θ-contractive fuzzy mappings
    Ahmad, Jamshaid
    Al-Mazrooei, Abdullah Eqal
    Altun, Ishak
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 1935 - 1942
  • [49] Modified α-ψ-contractive mappings with applications
    Peyman Salimi
    Abdul Latif
    Nawab Hussain
    Fixed Point Theory and Applications, 2013
  • [50] Contractive Mappings on Unbounded Sets
    Reich, Simeon
    Zaslavski, Alexander J.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (01) : 27 - 47