Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals

被引:8
|
作者
Steilan, Carmen [1 ]
Sen, Gourav [1 ]
Duffar, Thierry [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 1340 Rue Piscine,BP 75, F-38402 St Martin Dheres, France
关键词
Stresses; Computer simulation; Kyropoulos method; Sapphire; SINGLE-CRYSTAL; INTERFACE SHAPE; DISLOCATION MULTIPLICATION; TEMPERATURE; ANISOTROPY; ROTATION; MODEL; GAAS;
D O I
10.1016/j.jcrysgro.2018.08.002
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Thermal stress computations during sapphire growth are compared between a resistive Czochralski furnace and a Kyropoulos inductive furnace. 2D - axisymmetric global simulations are performed to compute the thermal field in the furnace and the convection in the melt. Temperatures carried out from global modeling at a given stage of the growth process, are used for thermal stress computations in the crystal. Three-dimensional stress analysis, which takes into account the anisotropic elastic constants of sapphire, shows nearly axisymmetric von Mises stress distribution in the crystal. It is shown that applying 2D - axisymmetric modeling of thermal stress may result in significant errors. Computations performed for a crystal of 10 cm in diameter grown in a Kyropoulos furnace show only a thin region of 2-3 mm with high thermal stress located at the crystal periphery. The model predicts very low thermal stresses in the central part of the crystal. Simulations of an ingot grown by Czochralski technique, show higher thermal stresses in almost the whole volume of the crystal. Numerical computations are in agreement with our previous measurements of dislocation density in sapphire crystals grown by the Kyropoulos method. The present numerical results can explain the experimental observations showing that sapphire crystals grown by Czochralski technique have a much higher dislocation density than Kyropoulos grown ingots.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 50 条
  • [41] Czochralski growth of antimony single crystals
    Ivanova, L. D.
    Granatkina, Yu. V.
    INORGANIC MATERIALS, 2007, 43 (03) : 247 - 252
  • [42] Czochralski Growth and Properties of Scintillating Crystals
    Yoshikawa, A.
    Chani, V.
    Nikl, M.
    ACTA PHYSICA POLONICA A, 2013, 124 (02) : 250 - 264
  • [43] Czochralski growth of antimony single crystals
    L. D. Ivanova
    Yu. V. Granatkina
    Inorganic Materials, 2007, 43 : 247 - 252
  • [44] HYDROPNEUMATIC APPARATUS FOR CZOCHRALSKI GROWTH OF CRYSTALS
    BRICE, JC
    LELIEVRE, GW
    WHIFFIN, PAC
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1969, 2 (12): : 1063 - +
  • [45] Crystal cracking analysis and three-dimensional effects during Kyropoulos sapphire growth
    Fang, H. S.
    Wang, S.
    Jin, Z. L.
    Tian, J.
    Xu, J. F.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2013, 48 (09): : 649 - 657
  • [46] Numerical simulation of heat and fluid flows for sapphire single crystal growth by the Kyropoulos method
    Chen, Chun-Hung
    Chen, Jyh-Chen
    Lu, Chung-Wei
    Liu, Che-Ming
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 162 - 167
  • [47] Czochralski growth of lead iodide single crystals: Investigations and comparison with the Bridgman method
    Tonn, J.
    Danilewsky, A. N.
    Croell, A.
    Matuchova, M.
    Maixner, J.
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 558 - 562
  • [48] Effect of power arrangement on the crystal shape during the Kyropoulos sapphire crystal growth process
    Chen, Chun-Hung
    Chen, Jyh-Chen
    Lu, Chung-Wei
    Liu, Che-Ming
    JOURNAL OF CRYSTAL GROWTH, 2012, 352 (01) : 9 - 15
  • [49] Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique
    Li, H.
    Ghezal, E. A.
    Nehari, A.
    Alombert-Goget, G.
    Brenier, A.
    Lebbou, K.
    OPTICAL MATERIALS, 2013, 35 (05) : 1071 - 1076
  • [50] The growth of sapphire single crystals
    Golubovic, A
    Nikolic, S
    Djuric, S
    Valcic, A
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2001, 66 (06) : 411 - 418