Performance Evaluation of Pre-trained Models in Sarcasm Detection Task

被引:2
|
作者
Wang, Haiyang [1 ]
Song, Xin [1 ]
Zhou, Bin [1 ]
Wang, Ye [1 ]
Gao, Liqun [1 ]
Jia, Yan [1 ]
机构
[1] Natl Univ Def Technol, Changsha, Peoples R China
关键词
Sarcasm detection; Pre-trained models; Natural language processing;
D O I
10.1007/978-3-030-91560-5_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sarcasm is a widespread phenomenon in social media such as Twitter or Instagram. As a critical task of Natural Language Processing (NLP), sarcasm detection plays an important role in many domains of semantic analysis, such as stance detection and sentiment analysis. Recently, pre-trained models (PTMs) on large unlabelled corpora have shown excellent performance in various tasks of NLP. PTMs have learned universal language representations and can help researchers avoid training a model from scratch. The goal of our paper is to evaluate the performance of various PTMs in the sarcasm detection task. We evaluate and analyse the performance of several representative PTMs on four well-known sarcasm detection datasets. The experimental results indicate that RoBERTa outperforms other PTMs and it is also better than the best baseline in three datasets. DistilBERT is the best choice for sarcasm detection task when computing resources are limited. However, XLNet may not be suitable for sarcasm detection task. In addition, we implement detailed grid search for four hyperparameters to investigate their impact on PTMs. The results show that learning rate is the most important hyperparameter. Furthermore, we also conduct error analysis by means of several sarcastic sentences to explore the reasons of detection failures, which provides instructive ideas for future research.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [41] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [42] Deep Compression of Pre-trained Transformer Models
    Wang, Naigang
    Liu, Chi-Chun
    Venkataramani, Swagath
    Sen, Sanchari
    Chen, Chia-Yu
    El Maghraoui, Kaoutar
    Srinivasan, Vijayalakshmi
    Chang, Leland
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [43] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [44] Semantic Programming by Example with Pre-trained Models
    Verbruggen, Gust
    Le, Vu
    Gulwani, Sumit
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (OOPSLA):
  • [45] Aliasing Backdoor Attacks on Pre-trained Models
    Wei, Cheng'an
    Lee, Yeonjoon
    Chen, Kai
    Meng, Guozhu
    Lv, Peizhuo
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 2707 - 2724
  • [46] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [47] Continual Learning with Pre-Trained Models: A Survey
    Zhou, Da-Wei
    Sun, Hai-Long
    Ning, Jingyi
    Ye, Han-Jia
    Zhan, De-Chuan
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 8363 - 8371
  • [48] Code Execution with Pre-trained Language Models
    Liu, Chenxiao
    Lu, Shuai
    Chen, Weizhu
    Jiang, Daxin
    Svyatkovskiy, Alexey
    Fu, Shengyu
    Sundaresan, Neel
    Duan, Nan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 4984 - 4999
  • [49] Are Pre-trained Convolutions Better than Pre-trained Transformers?
    Tay, Yi
    Dehghani, Mostafa
    Gupta, Jai
    Aribandi, Vamsi
    Bahri, Dara
    Qin, Zhen
    Metzler, Donald
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4349 - 4359
  • [50] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211