Properly-Weighted Graph Laplacian for Semi-supervised Learning

被引:29
|
作者
Calder, Jeff [1 ]
Slepcev, Dejan [2 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2020年 / 82卷 / 03期
关键词
Semi-supervised learning; Label propagation; Asymptotic consistency; PDEs on graphs; Gamma-convergence; P-LAPLACIAN; REGULARIZATION; CLASSIFICATION; CONVERGENCE; RANKING;
D O I
10.1007/s00245-019-09637-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The performance of traditional graph Laplacian methods for semi-supervised learning degrades substantially as the ratio of labeled to unlabeled data decreases, due to a degeneracy in the graph Laplacian. Several approaches have been proposed recently to address this, however we show that some of them remain ill-posed in the large-data limit. In this paper, we show a way to correctly set the weights in Laplacian regularization so that the estimator remains well posed and stable in the large-sample limit. We prove that our semi-supervised learning algorithm converges, in the infinite sample size limit, to the smooth solution of a continuum variational problem that attains the labeled values continuously. Our method is fast and easy to implement.
引用
收藏
页码:1111 / 1159
页数:49
相关论文
共 50 条
  • [21] Sharpened graph ensemble for semi-supervised learning
    Choi, Inae
    Park, Kanghee
    Shin, Hyunjung
    INTELLIGENT DATA ANALYSIS, 2013, 17 (03) : 387 - 398
  • [22] Graph Agreement Models for Semi-Supervised Learning
    Stretcu, Otilia
    Viswanathan, Krishnamurthy
    Movshovitz-Attias, Dana
    Platanios, Emmanouil Antonios
    Tomkins, Andrew
    Ravi, Sujith
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [24] A distributed algorithm for graph semi-supervised learning
    Huang, Daxin
    Jiang, Junzheng
    Zhou, Fang
    Ouyang, Shan
    PATTERN RECOGNITION LETTERS, 2021, 151 : 48 - 54
  • [25] Deep graph learning for semi-supervised classification
    Lin, Guangfeng
    Kang, Xiaobing
    Liao, Kaiyang
    Zhao, Fan
    Chen, Yajun
    PATTERN RECOGNITION, 2021, 118
  • [26] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [27] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [28] Link prediction in graph construction for supervised and semi-supervised learning
    Berton, Lilian
    Valverde-Rebaza, Jorge
    Lopes, Alneu de Andrade
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [29] Auto-weighted Multi-view learning for Semi-Supervised graph clustering
    Liu, Songhua
    Ding, Caiying
    Jiang, Fei
    Wang, Yan
    Yin, Baoyong
    NEUROCOMPUTING, 2019, 362 : 19 - 32
  • [30] Graph construction based on re-weighted sparse representation for semi-supervised learning
    Liu, X. (609370222@qq.com), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (10):