Wellposedness for semirelativistic Schrodinger equation with power-type nonlinearity

被引:23
|
作者
Shi, Qihong [1 ]
Peng, Congming [2 ]
机构
[1] Lanzhou Univ Technol, Dept Math, Lanzhou 730000, Gansu, Peoples R China
[2] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
基金
中国国家自然科学基金;
关键词
Semirelativistic equation; Cubic nonlinearity; Low regularity; Wellposedness; WELL-POSEDNESS; CAUCHY-PROBLEM; REGULARITY; SPACE;
D O I
10.1016/j.na.2018.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we employ Bourgain type norm to investigate the wellposedness for the Cauchy problem of one dimensional semirelativistic Schrodinger equation with cubic nonlinearity in space H-s. We extend the previous existence result to the space regularity s >= 1/4. Moreover, we point out the persistence of the solution in different regularity space is uniform by an iterate argument. Additionally, we are also able to say more for semirelativistic Schrodinger equation with general power-type nonlinearity. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [41] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224
  • [42] POWER-TYPE QUASIMINIMIZERS
    Bjorn, Anders
    Bjorn, Jana
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) : 301 - 319
  • [43] SHARP VARIATIONAL CHARACTERIZATION AND A SCHRODINGER EQUATION WITH HARTREE TYPE NONLINEARITY
    Chen, Jianqing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 1613 - 1628
  • [44] Solutions to a modified gauged Schrodinger equation with Choquard type nonlinearity
    Xiao, Yingying
    Qiu, Yipeng
    Xie, Li
    Zhu, Wenjie
    OPEN MATHEMATICS, 2023, 21 (01):
  • [45] SCHRODINGER EQUATION WITH EXPONENTIAL NONLINEARITY
    SHEERIN, JP
    ONG, RSB
    PHYSICS LETTERS A, 1977, 63 (03) : 279 - 280
  • [46] Wellposedness of a Nonlinear, Logarithmic Schrodinger Equation of Doebner-Goldin Type Modeling Quantum Dissipation
    Guerrero, P.
    Lopez, J. L.
    Montejo-Gamez, J.
    Nieto, J.
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (05) : 631 - 663
  • [47] STABILITY OF TRAVELING-WAVE SOLUTIONS FOR A SCHRODINGER SYSTEM WITH POWER-TYPE NONLINEARITIES
    Nguyen, Nghiem V.
    Tian, Rushun
    Wang, Zhi-Qiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [48] Cauchy problem of generalized Boussinesq equation with combined power-type nonlinearities
    Xu Runzhang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (18) : 2318 - 2328
  • [49] Global wellposedness of the equivariant Chern-Simons-Schrodinger equation
    Liu, Baoping
    Smith, Paul
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (03) : 751 - 794
  • [50] Stability and instability of standing waves to a system of Schrodinger equations with combined power-type nonlinearities
    Song, Xianfa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 345 - 359