A conjecture concerning the pure exponential diophantine equation ax + by = cz

被引:9
|
作者
Le, MH [1 ]
机构
[1] Zhanjiang Normal Coll, Dept Math, Zhanjiang 524005, Peoples R China
基金
中国国家自然科学基金;
关键词
pure exponential diophantine equation; number of solutions; completely determine;
D O I
10.1007/s10114-004-0436-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, c, r be fixed positive integers such that a(2) + b(2) = c(r), min(a, b, c, r) > 1 and 2 inverted iota r. In this paper we prove that if a equivalent to 2 (mod 4), b equivalent to 3 (mod 4), c > 3. 10(37) and r > 7200, then the equation a(x) + b(y) = c(z) only has the solution (x, y, z) = (2, 2, r).
引用
收藏
页码:943 / 948
页数:6
相关论文
共 50 条
  • [41] An exponential diophantine equation
    Henderson, D
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (03): : 243 - 243
  • [42] AN EXPONENTIAL DIOPHANTINE EQUATION
    ALEX, LJ
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01): : 63 - 63
  • [43] An Exponential Diophantine Equation
    Jung, Sae Ho
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (08): : 761 - 761
  • [44] An exponential diophantine equation
    Le, MH
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (01) : 99 - 105
  • [45] ON THE DIOPHANTINE EQUATION xy - yx = cz
    Zhang, Zhongfeng
    Luo, Jiagui
    Yuan, Pingzhi
    COLLOQUIUM MATHEMATICUM, 2012, 128 (02) : 277 - 285
  • [46] JESMANOWICZ' CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS
    Miyazaki, Takafumi
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2011, 45 (02) : 207 - 229
  • [47] On a conjecture concerning the exponential Diophantine equation (an2+1)x + (bn2-1)y = (cn)z
    Fei, Shuanglin
    Zhu, Guangyan
    Wu, Rongjun
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 4096 - 4107
  • [48] DIOPHANTINE EQUATION AX2 PLUS BY2 PLUS CZ2=DXYZ
    ROSENBERGER, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 305 : 122 - 125
  • [49] A NOTE ON THE DIOPHANTINE EQUATION |ax - by| = c
    He, Bo
    Togbe, Alain
    Yang, Shichun
    MATHEMATICA SCANDINAVICA, 2010, 107 (02) : 161 - 173
  • [50] ON THE EXPONENTIAL DIOPHANTINE EQUATION Fnx
    Luca, Florian
    Tchammou, Euloge
    Togbe, Alain
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 66 (02) : 139 - 159