LOCAL MULTILEVEL METHODS WITH RECTANGULAR FINITE ELEMENTS FOR THE BIHARMONIC PROBLEM

被引:1
|
作者
Tang, Shibing [1 ]
Xu, Xuejun [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
[2] Tongji Univ, Sch Math Sci, Beijing 100190, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2017年 / 39卷 / 06期
基金
中国国家自然科学基金;
关键词
biharmonic problem; Schwarz framework; Bogner-Fox-Schmit element; Adini element; local multilevel method; MULTIGRID METHOD; UNIFORM-CONVERGENCE; ITERATIVE METHODS; ELLIPTIC PROBLEMS; SCHWARZ METHODS; V-CYCLE; PRECONDITIONERS; OPTIMALITY; EQUATIONS; MESHES;
D O I
10.1137/17M111008X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some local multilevel methods are presented to solve the linear algebraic systems resulting from the application of adaptive conforming Bogner-Fox-Schmit rectangular element and nonconforming Adini rectangular element approximations to the biharmonic problem. The abstract Schwarz framework is applied to verify the uniform convergence of the local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes associated with the local refinements. By the abstract framework, a convergence estimate may also be derived from the stability of the space splitting and its strengthened Cauchy Schwarz inequality. We demonstrate the optimality of the proposed algorithms by extensive numerical experiments.
引用
收藏
页码:A2592 / A2615
页数:24
相关论文
共 50 条
  • [21] Discontinuous Galerkin methods for the biharmonic problem
    Georgoulis, Emmanuil H.
    Houston, Paul
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (03) : 573 - 594
  • [22] COMPARISON RESULTS OF NONSTANDARD P2 FINITE ELEMENT METHODS FOR THE BIHARMONIC PROBLEM
    Carstensen, Carsten
    Gallistl, Dietmar
    Nataraj, Neela
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 977 - 990
  • [23] Method of Mixed Finite Elements for the Biharmonic Equation.
    Kesavan, S.
    Vanninathan, M.
    RAIRO Analyse Numerique/Numerical Analysis (Revue Francaise d'Automatique, d'Informatique et de Recherche Operationnelle), 1977, 11 (03): : 255 - 270
  • [24] Coupling of finite elements and boundary elements methods for study of the frictional contact problem
    Guyot, N
    Kosior, F
    Maurice, G
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 181 (1-3) : 147 - 159
  • [25] Lowest-order nonstandard finite element methods for time-fractional biharmonic problem
    Mahata, Shantiram
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 43 - 71
  • [26] Nonconforming Rectangular Morley Finite Elements
    Andreev, A. B.
    Racheva, M. R.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 158 - 165
  • [27] Superconvergence for rectangular serendipity finite elements
    Chuanmiao Chen
    Science in China Series A: Mathematics, 2003, 46 : 1 - 10
  • [28] Rectangular mixed finite elements for elasticity
    Arnold, DN
    Awanou, G
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (09): : 1417 - 1429
  • [29] USE OF RECTANGULAR FINITE-ELEMENTS
    HARTIG, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (04): : T135 - T136
  • [30] Superconvergence for rectangular serendipity finite elements
    陈传淼
    Science China Mathematics, 2003, (01) : 1 - 10