LOCAL MULTILEVEL METHODS WITH RECTANGULAR FINITE ELEMENTS FOR THE BIHARMONIC PROBLEM

被引:1
|
作者
Tang, Shibing [1 ]
Xu, Xuejun [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
[2] Tongji Univ, Sch Math Sci, Beijing 100190, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2017年 / 39卷 / 06期
基金
中国国家自然科学基金;
关键词
biharmonic problem; Schwarz framework; Bogner-Fox-Schmit element; Adini element; local multilevel method; MULTIGRID METHOD; UNIFORM-CONVERGENCE; ITERATIVE METHODS; ELLIPTIC PROBLEMS; SCHWARZ METHODS; V-CYCLE; PRECONDITIONERS; OPTIMALITY; EQUATIONS; MESHES;
D O I
10.1137/17M111008X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some local multilevel methods are presented to solve the linear algebraic systems resulting from the application of adaptive conforming Bogner-Fox-Schmit rectangular element and nonconforming Adini rectangular element approximations to the biharmonic problem. The abstract Schwarz framework is applied to verify the uniform convergence of the local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes associated with the local refinements. By the abstract framework, a convergence estimate may also be derived from the stability of the space splitting and its strengthened Cauchy Schwarz inequality. We demonstrate the optimality of the proposed algorithms by extensive numerical experiments.
引用
收藏
页码:A2592 / A2615
页数:24
相关论文
共 50 条