Research on Autonomous Decision-Making of UCAV Based on Deep Reinforcement Learning

被引:3
|
作者
Wang, Linxiang [1 ]
Wei, Hongtao [1 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Peoples R China
关键词
virtual reality; deep reinforcement learning; combat simulation; UCAV;
D O I
10.1109/ICTC55111.2022.9778652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the intelligence level of training opponents in UCAV air combat simulation and the realism and immersion of air combat simulation in 3D space, this paper proposes a deep reinforcement learning algorithm for UCAV autonomous control based on virtual reality technology. A combination of reinforcement learning and Unity3D is used to train UCAV agents to achieve air combat tasks in 3D virtual reality space, and imitation learning is added to improve the efficiency of policy generation. Multiple perceptrons are used to simplify the agent's acquisition of environmental state data, and reward functions are designed by integrating UCAV angle, speed, and altitude considerations to visualize the entire 3D visualization process of reinforcement learning training UCAV agents to interact with the environment.
引用
收藏
页码:122 / 126
页数:5
相关论文
共 50 条
  • [41] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [42] Autonomous decision-making of UAV cluster with communication constraints based on reinforcement learning
    Zhang, Ting-Ting
    Chen, Yan
    Dong, Ren-zhi
    Chen, Tao
    Liu, Yan
    Zhang, Kai-Ge
    Song, Ai-Guo
    Lan, Yu-Shi
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2025, 14 (01):
  • [43] Random Prior Network for Autonomous Driving Decision-Making Based on Reinforcement Learning
    Qiang, Yuchuan
    Wang, Xiaolan
    Wang, Yansong
    Zhang, Weiwei
    Xu, Jianxun
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2024, 150 (04)
  • [44] SRAD: Autonomous Decision-Making Method for UAV Based on Safety Reinforcement Learning
    Xiao, Wenwen
    Luo, Xiangfeng
    Xie, Shaorong
    EXPERT SYSTEMS, 2025, 42 (05)
  • [45] Reinforcement learning for decision-making under deep uncertainty
    Pei, Zhihao
    Rojas-Arevalo, Angela M.
    de Haan, Fjalar J.
    Lipovetzky, Nir
    Moallemi, Enayat A.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 359
  • [46] Driver-like decision-making method for vehicle longitudinal autonomous driving based on deep reinforcement learning
    Gao, Zhenhai
    Yan, Xiangtong
    Gao, Fei
    He, Lei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2022, 236 (13) : 3060 - 3070
  • [47] A Rear Anti-Collision Decision-Making Methodology Based on Deep Reinforcement Learning for Autonomous Commercial Vehicles
    Hu, Weiming
    Li, Xu
    Hu, Jinchao
    Song, Xiang
    Dong, Xuan
    Kong, Dong
    Xu, Qimin
    Ren, Chunxiao
    IEEE SENSORS JOURNAL, 2022, 22 (16) : 16370 - 16380
  • [48] Decision-making for the autonomous navigation of USVs based on deep reinforcement learning under IALA maritime buoyage system
    Zhao, Yiming
    Han, Fenglei
    Han, Duanfeng
    Peng, Xiao
    Zhao, Wangyuan
    OCEAN ENGINEERING, 2022, 266
  • [49] Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning
    Wang, Yuan
    Zhang, Xiwen
    Zhou, Rong
    Tang, Shangqin
    Zhou, Huan
    Ding, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [50] Autonomous Vehicles' Decision-Making Behavior in Complex Driving Environments Using Deep Reinforcement Learning
    Qi, Xiao
    Ye, Yingjun
    Sun, Jian
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5853 - 5864