Volume reconstruction based on non-rigid registration

被引:0
|
作者
Bao, Xudong [1 ,3 ]
Xu, Danhua [1 ,3 ]
Toumoulin, Christine [2 ,3 ]
Luo, Limin [1 ,3 ]
机构
[1] Southeast Univ, Sch Comp Sci & Technol, Lab Image Sci & Technol, Nanjing 210096, Jiangsu, Peoples R China
[2] Univ Rennes 1, Lab Traitement Signal & Image, INSERM, U642, F-35000 Rennes, France
[3] CRIBs, Rennes, France
关键词
interpolation; non-rigid registration; level set;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Volume reconstruction is one of the key problems in 3D image rendering and analysis. Inter slice interpolation methods have been widely discussed in the literature and object-based algorithms have been shown to well behave. In this paper, we present a non-rigid registration based strategy to improve the volume reconstruction. A level set evolution technique is proposed to yield the deformation between adjacent slices. A modified bilinear interpolation method is then designed to generate propagating image. A multi-resolution scheme is applied to decrease the computation time and support large deformation. The resulting images show good results on regions enclosing different anatomic structures.
引用
收藏
页码:6536 / +
页数:3
相关论文
共 50 条
  • [41] Survey of Non-Rigid Registration Tools in Medicine
    Keszei, Andras P.
    Berkels, Benjamin
    Deserno, Thomas M.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (01) : 102 - 116
  • [42] An efficient algorithm for non-rigid object registration
    Makovetskii, A.
    Voronin, S.
    Kober, V
    Voronin, A.
    COMPUTER OPTICS, 2020, 44 (01) : 67 - 73
  • [43] Probabilistic inference of regularisation in non-rigid registration
    Simpson, Ivor J. A.
    Schnabel, Julia A.
    Groves, Adrian R.
    Andersson, Jesper L. R.
    Woolrich, Mark W.
    NEUROIMAGE, 2012, 59 (03) : 2438 - 2451
  • [44] An efficient volumetric method for non-rigid registration
    Zhang, Ran
    Chen, Xuejin
    Shiratori, Takaaki
    Tong, Xin
    Liu, Ligang
    GRAPHICAL MODELS, 2015, 79 : 1 - 11
  • [45] Multiple Non-Rigid Surface Detection and Registration
    Wu, Yi
    Ijiri, Yoshihisa
    Yang, Ming-Hsuan
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1992 - 1999
  • [46] Evaluation of similarity measures for non-rigid registration
    Skerl, Darko
    Likar, Bostjan
    Pernus, Franjo
    BIOMEDICAL IMAGE REGISTRATION, PROCEEDINGS, 2006, 4057 : 160 - 168
  • [47] Non-rigid image registration by neural computation
    Srikanchana, R
    Xuan, JH
    Freedman, MT
    Nguyen, CC
    Wang, Y
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2004, 37 (2-3): : 237 - 246
  • [48] Similarity metrics for groupwise non-rigid registration
    Bhatia, Kanwal K.
    Hajnal, Jo
    Hammers, Alexander
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 544 - +
  • [49] Non-rigid image registration by neural computations
    Srikanchana, R
    Woods, K
    Xuan, JH
    Nguyen, C
    Wang, Y
    NEURAL NETWORKS FOR SIGNAL PROCESSING XI, 2001, : 413 - 422
  • [50] Non-rigid image registration: theory and practice
    Crum, WR
    Hartkens, T
    Hill, DLG
    BRITISH JOURNAL OF RADIOLOGY, 2004, 77 : S140 - S153