Evolution of microscopic and mesoscopic synchronized patterns in complex networks

被引:8
|
作者
Gomez-Gardenes, Jesus [1 ,2 ]
Moreno, Yamir [2 ,3 ]
Arenas, Alex [2 ,4 ]
机构
[1] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, Zaragoza 50018, Spain
[3] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[4] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona 43007, Spain
关键词
HIERARCHICAL SYNCHRONIZATION; KURAMOTO OSCILLATORS;
D O I
10.1063/1.3532801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Previous studies about synchronization of Kuramoto oscillators in complex networks have shown how local patterns of synchronization emerge differently in homogeneous and heterogeneous topologies. The main difference between the paths to synchronization in both topologies is rooted in the growth of the largest connected component of synchronized nodes when increasing the coupling between the oscillators. Nevertheless, a recent study focusing on this same phenomenon has claimed the contrary, stating that the statistical distribution of synchronized clusters for both types of networks is similar. Here we provide extensive numerical evidences that confirm the original claims, namely, that the microscopic and mesoscopic dynamics of the synchronized patterns indeed follow different routes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3532801]
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Synchronous patterns in complex networks
    Wang XinGang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2020, 50 (01)
  • [22] Finite-size scaling of synchronized oscillation on complex networks
    Hong, Hyunsuk
    Park, Hyunggyu
    Tang, Lei-Han
    PHYSICAL REVIEW E, 2007, 76 (06)
  • [23] Microscopic modeling of synchronized traffic
    Knospe, W
    Santen, L
    Schadschneider, A
    Schreckenberg, M
    TRAFFIC AND GRANULAR FLOW'01, 2003, : 97 - 102
  • [24] Epidemic propagation and microscopic structure of complex networks
    Zhang, H
    Liu, ZH
    Ma, WC
    CHINESE PHYSICS LETTERS, 2006, 23 (04) : 1050 - 1053
  • [25] Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules
    Shrestha, Ashok K.
    Blazek, Jaroslav
    Flanagan, Bernadine M.
    Dhital, Sushil
    Larroque, Oscar
    Morell, Matthew K.
    Gilbert, Elliot P.
    Gidley, Michael J.
    CARBOHYDRATE POLYMERS, 2012, 90 (01) : 23 - 33
  • [26] Gene networks and developmental context: the importance of understanding complex gene expression patterns in evolution
    Signor, Sarah A.
    Arbeitman, Michelle N.
    Nuzhdin, Sergey V.
    EVOLUTION & DEVELOPMENT, 2016, 18 (03) : 201 - 209
  • [27] Complex evolution in genetic networks
    Bignone, FA
    Livi, R
    Propato, M
    EUROPHYSICS LETTERS, 1997, 40 (05): : 497 - 502
  • [28] Information evolution in complex networks
    Tian, Yang
    Li, Guoqi
    Sun, Pei
    CHAOS, 2022, 32 (07)
  • [29] Evolution of Correlations in Complex Networks
    Stamos, M. M.
    Parousis-Orthodoxou, K. J.
    Vlachos, D. S.
    IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [30] Mesoscopic approach to locally Hopfield neural networks in presence of correlated patterns
    Piekniewski, Filip
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3260 - 3266