Advances in spatial transcriptomic data analysis

被引:116
|
作者
Dries, Ruben [1 ,2 ,3 ]
Chen, Jiaji [1 ]
Del Rossi, Natalie [4 ]
Khan, Mohammed Muzamil [1 ,2 ,3 ]
Sistig, Adriana [4 ]
Yuan, Guo-Cheng [4 ,5 ]
机构
[1] Boston Univ, Dept Med, Sch Med, Boston, MA 02118 USA
[2] Boston Univ, Bioinformat Grad Program, Boston, MA 02215 USA
[3] Boston Univ, Sect Computat Biomed, Sch Med, Boston, MA 02118 USA
[4] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
CELL RNA-SEQ; IN-SITU RNA; GENE-EXPRESSION; IDENTIFICATION; ORGANIZATION; ANNOTATION; TISSUE;
D O I
10.1101/gr.275224.121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics is a rapidly growing field that promises to comprehensively characterize tissue organization and architecture at the single-cell or subcellular resolution. Such information provides a solid foundation for mechanistic understanding of many biological processes in both health and disease that cannot be obtained by using traditional technologies. The development of computational methods plays important roles in extracting biological signals from raw data. Various approaches have been developed to overcome technology-specific limitations such as spatial resolution, gene coverage, sensitivity, and technical biases. Downstream analysis tools formulate spatial organization and cell-cell communications as quantifiable properties, and provide algorithms to derive such properties. Integrative pipelines further assemble multiple tools in one package, allowing biologists to conveniently analyze data from beginning to end. In this review, we summarize the state of the art of spatial transcriptomic data analysis methods and pipelines, and discuss how they operate on different technological platforms.
引用
收藏
页码:1706 / 1718
页数:13
相关论文
共 50 条
  • [31] Spatial and Transcriptomic Analysis of Perineural Invasion in Oral Cancer
    Schmitd, Ligia B.
    Perez-Pacheco, Cindy
    Bellile, Emily L.
    Wu, Weisheng
    Casper, Keith
    Mierzwa, Michelle
    Rozek, Laura S.
    Wolf, Gregory T.
    Taylor, Jeremy M. G.
    D'Silva, Nisha J.
    CLINICAL CANCER RESEARCH, 2022, 28 (16) : 3557 - 3572
  • [32] Advances in transcriptomic analysis of Salmonella biofilms and their correlation with food safety
    Meng, Fanqiang
    Lyu, Fengxia
    Bie, Xiaomei
    Lu, Yingjian
    Lu, Zhaoxin
    CURRENT OPINION IN FOOD SCIENCE, 2024, 55
  • [33] Spatial Transcriptomic Analysis of Acute Heart Rejection Model
    Ainasoja, O. H.
    Hurskainen, M.
    Ghimire, B.
    Lahtela, J.
    Syrjala, S.
    Lemstrom, K.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2022, 41 (04): : S301 - S301
  • [34] Spatial Analysis and Modeling: Advances and Evolution
    Murray, Alan T.
    GEOGRAPHICAL ANALYSIS, 2021, 53 (04) : 647 - 664
  • [35] Quantitative transcriptomic and epigenomic data analysis: a primer
    Coussement, Louis
    Van Criekinge, Wim
    De Meyer, Tim
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [36] Reproducible and Integrative Analysis of Asthma Transcriptomic Data
    Kan, M.
    Shumyatcher, M.
    Himes, B. E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [37] WebAtlas pipeline for integrated single-cell and spatial transcriptomic data
    Li, Tong
    Horsfall, David
    Basurto-Lozada, Daniela
    Roberts, Kenny
    Prete, Martin
    Lawrence, John E. G.
    He, Peng
    Tuck, Elisabeth
    Moore, Josh
    Yoldas, Aybuke Kupcu
    Babalola, Kolawole
    Hartley, Matthew
    Ghazanfar, Shila
    Teichmann, Sarah A.
    Haniffa, Muzlifah
    Bayraktar, Omer Ali
    NATURE METHODS, 2025, 22 (01) : 3 - 5
  • [38] Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data
    Shan, Xu
    Chen, Jinyu
    Dong, Kangning
    Zhou, Wei
    Zhang, Shihua
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 650 - 663
  • [39] SPATIAL TRANSCRIPTOMIC ANALYSIS IDENTIFIES TROPHOBLAST SUBPOPULATIONS IN FGR MARKED BY THEIR TRANSCRIPTOMIC ENTROPY THAT DISPLAY DISTINCT SPATIAL RELATIONSHIPS WITH UNDERLYING CELLS
    Sharps, Megan
    Garner, Terence
    Brady, Chloe
    Wangsaputra, Ivan
    Jones, Carolyn
    Aplin, John
    Stevens, Adam
    PLACENTA, 2024, 154 : E4 - E5
  • [40] Advances in Mossbauer data analysis
    de Souza, PA
    HYPERFINE INTERACTIONS, 1998, 113 (1-4): : 383 - 390