Heat kernel estimates for Δ + Δα/2 under gradient perturbation

被引:22
|
作者
Chen, Zhen-Qing [1 ]
Hu, Eryan [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
Heat kernel; Transition density; Feller semigroup; Perturbation; Positivity; Levy system; Kato class; BROWNIAN-MOTION; SINGULAR DRIFT; FRACTIONAL LAPLACIAN; HARNACK INEQUALITY; STABLE PROCESS; SETS;
D O I
10.1016/j.spa.2015.02.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For alpha is an element of (0, 2) and M > 0, we consider a family of nonlocal operators {Delta + a(alpha) Delta(alpha/2), a is an element of (0, M]} on le under Kato class gradient perturbation. We establish the existence and uniqueness of their fundamental solutions, and derive their sharp two-sided estimates. The estimates give explicit dependence on a and recover the sharp estimates for Brownian motion with drift as a -> 0. Each fundamental solution determines a conservative Feller process X. We characterize X as the unique solution of the corresponding martingale problem as well as a Levy process with singular drift. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2603 / 2642
页数:40
相关论文
共 50 条
  • [1] DIRICHLET HEAT KERNEL ESTIMATES FOR FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    ANNALS OF PROBABILITY, 2012, 40 (06): : 2483 - 2538
  • [2] HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION
    Chen, Peng
    Song, Renming
    Xie, Longjie
    Xie, Yingchao
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 91 - 111
  • [3] GRADIENT ESTIMATES AND HEAT KERNEL ESTIMATES
    QIAN, ZM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 975 - 990
  • [4] Heat kernel gradient estimates for the Vicsek set
    Baudoin, Fabrice
    Chen, Li
    MATHEMATISCHE NACHRICHTEN, 2024,
  • [5] Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
    Bogdan, Krzysztof
    Jakubowski, Tomasz
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 179 - 198
  • [6] Estimates of Heat Kernel of Fractional Laplacian Perturbed by Gradient Operators
    Krzysztof Bogdan
    Tomasz Jakubowski
    Communications in Mathematical Physics, 2007, 271 : 179 - 198
  • [7] DIRICHLET HEAT KERNEL ESTIMATES FOR Δα/2 + Δβ/2
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (04) : 1357 - 1392
  • [8] STABILITY OF DIRICHLET HEAT KERNEL ESTIMATES FOR NON-LOCAL OPERATORS UNDER FEYNMAN-KAC PERTURBATION
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) : 5237 - 5270
  • [9] Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients
    de Raynal, P. E. Chaudru
    Menozzi, S.
    Pesce, A.
    Zhang, X.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 183
  • [10] Gradient estimates for the subelliptic heat kernel on H-type groups
    Eldredge, Nathaniel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (02) : 504 - 533