Heat kernel gradient estimates for the Vicsek set

被引:0
|
作者
Baudoin, Fabrice [1 ]
Chen, Li [2 ]
机构
[1] Aarhus Univ, Dept Math, Aarhus, Denmark
[2] Louisiana State Univ, Dept Math, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
heat kernel gradient bound; Vicsek set; BROWNIAN-MOTION; RIESZ TRANSFORM; SOBOLEV; INEQUALITIES; DERIVATIONS; POINCARE;
D O I
10.1002/mana.202400180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove pointwise and Lp$L<^>p$ gradient estimates for the heat kernel on the bounded and unbounded Vicsek set and applications to Sobolev inequalities are given. We also define a Hodge semigroup in that setting and prove estimates for its kernel.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] GRADIENT ESTIMATES AND HEAT KERNEL ESTIMATES
    QIAN, ZM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 975 - 990
  • [2] Heat kernel estimates for Δ + Δα/2 under gradient perturbation
    Chen, Zhen-Qing
    Hu, Eryan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (07) : 2603 - 2642
  • [3] Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
    Bogdan, Krzysztof
    Jakubowski, Tomasz
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 179 - 198
  • [4] DIRICHLET HEAT KERNEL ESTIMATES FOR FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION
    Chen, Zhen-Qing
    Kim, Panki
    Song, Renming
    ANNALS OF PROBABILITY, 2012, 40 (06): : 2483 - 2538
  • [5] Estimates of Heat Kernel of Fractional Laplacian Perturbed by Gradient Operators
    Krzysztof Bogdan
    Tomasz Jakubowski
    Communications in Mathematical Physics, 2007, 271 : 179 - 198
  • [6] HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION
    Chen, Peng
    Song, Renming
    Xie, Longjie
    Xie, Yingchao
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 91 - 111
  • [7] Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients
    de Raynal, P. E. Chaudru
    Menozzi, S.
    Pesce, A.
    Zhang, X.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 183
  • [8] Gradient estimates for the subelliptic heat kernel on H-type groups
    Eldredge, Nathaniel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (02) : 504 - 533
  • [9] The heat kernel and its estimates
    Saloff-Coste, Laurent
    PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 405 - 436
  • [10] Global heat kernel estimates
    Wang, JP
    PACIFIC JOURNAL OF MATHEMATICS, 1997, 178 (02) : 377 - 398