GAIT ENERGY IMAGE RESTORATION USING GENERATIVE ADVERSARIAL NETWORKS

被引:0
|
作者
Babaee, Maryam [1 ]
Zhu, Yue [1 ]
Koepueklue, Okan [1 ]
Hoermann, Stefan [1 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Inst Human Machine Commun, Munich, Germany
关键词
Gait Recognition; Gait Energy Image; Generative Adversarial Networks;
D O I
10.1109/icip.2019.8803236
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Gait is a biometric property that can be used for human identification in video surveillance. Basically, different gait features require motion of a person walking over one complete gait cycle. For example, in Gait Energy Image (GEI), average of silhouette images over one complete gait cycle is computed. However, in reality, there might be a partial gait cycle data available due to occlusion. In this paper, we propose a Generative Adversarial Network (GAN) in order to address the problem of gait recognition from incomplete gait cycle. Precisely, the network is able to reconstruct complete GEIs from incomplete GEIs. The proposed architecture is composed of (i) a generator which is an auto-encoder network to construct complete GEIs out of incomplete GEIs and (ii) two discriminators, one of which discriminates whether a given image is a full GEI while the other discriminates whether two GEIs belong to the same subject. We evaluate our approach on the OULP large gait dataset confirming that the proposed architecture successfully reconstructs complete GEIs from even extreme incomplete gait cycles.
引用
收藏
页码:2596 / 2600
页数:5
相关论文
共 50 条
  • [31] CubeGAN: Omnidirectional Image Synthesis Using Generative Adversarial Networks
    May, C.
    Aliaga, D.
    COMPUTER GRAPHICS FORUM, 2023, 42 (02) : 213 - 224
  • [32] Face Image Inpainting Using Cascaded Generative Adversarial Networks
    Chen J.-Z.
    Wang J.
    Gong X.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (06): : 910 - 917
  • [33] Fingerprint image denoising and inpainting using generative adversarial networks
    Zhong, Wei
    Mao, Li
    Ning, Yang
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 599 - 607
  • [34] Multicenter PET image harmonization using generative adversarial networks
    Haberl, David
    Spielvogel, Clemens P.
    Jiang, Zewen
    Orlhac, Fanny
    Iommi, David
    Carrio, Ignasi
    Buvat, Irene
    Haug, Alexander R.
    Papp, Laszlo
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 (09) : 2532 - 2546
  • [35] Fingerprint image denoising and inpainting using generative adversarial networks
    Wei Zhong
    Li Mao
    Yang Ning
    Evolutionary Intelligence, 2024, 17 : 599 - 607
  • [36] Generative Image Modeling Using Style and Structure Adversarial Networks
    Wang, Xiaolong
    Gupta, Abhinav
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 318 - 335
  • [37] Survey on leveraging pre-trained generative adversarial networks for image editing and restoration
    Ming LIU
    Yuxiang WEI
    Xiaohe WU
    Wangmeng ZUO
    Lei ZHANG
    ScienceChina(InformationSciences), 2023, 66 (05) : 28 - 55
  • [38] Deblurring and Restoration of Gastroscopy Image Based on Gradient-guidance Generative Adversarial Networks
    SHI Yonggang
    ZHANG Yue
    ZHOU Zhiguo
    LI Yi
    XIA Zhuoyan
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (01) : 70 - 77
  • [39] Combining residual structure and edge loss for face image restoration with generative adversarial networks
    Jia Zhao
    Bosheng Liu
    Runxiu Wu
    Longzhe Han
    Ming Chen
    Signal, Image and Video Processing, 2024, 18 : 2571 - 2582
  • [40] Survey on leveraging pre-trained generative adversarial networks for image editing and restoration
    Liu, Ming
    Wei, Yuxiang
    Wu, Xiaohe
    Zuo, Wangmeng
    Zhang, Lei
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)