Integrating Computational Protein Function Prediction into Drug Discovery Initiatives

被引:5
|
作者
Grant, Marianne A. [1 ,2 ,3 ]
机构
[1] Beth Israel Deaconess Med Ctr, Div Mol & Vasc Med, Boston, MA 02215 USA
[2] Beth Israel Deaconess Med Ctr, Vasc Biol Res Ctr, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
关键词
function prediction; protein annotation; structural comparison; drug discovery; structural genomics; bioinformatics; GENE ONTOLOGY; AUTOMATED PREDICTION; BINDING POCKETS; 3D STRUCTURES; WEB SERVER; ALIGNMENT; DATABASE; SITES; INFERENCE; ANNOTATION;
D O I
10.1002/ddr.20397
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies to identify valid targets and discover leads against them in order to accelerate drug discovery. The ever-increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology-based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical, and genetic knowledge have emerged. This works reviews current bioinformatic programs and approaches for protein function prediction/annotation and discusses their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully using the vast amounts of genomic sequence information available to drug discovery and development processes. Drug Dev Res 72: 4-16, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:4 / 16
页数:13
相关论文
共 50 条
  • [41] A large-scale evaluation of computational protein function prediction
    Radivojac, Predrag
    Clark, Wyatt T.
    Oron, Tal Ronnen
    Schnoes, Alexandra M.
    Wittkop, Tobias
    Sokolov, Artem
    Graim, Kiley
    Funk, Christopher
    Verspoor, Karin
    Ben-Hur, Asa
    Pandey, Gaurav
    Yunes, Jeffrey M.
    Talwalkar, Ameet S.
    Repo, Susanna
    Souza, Michael L.
    Piovesan, Damiano
    Casadio, Rita
    Wang, Zheng
    Cheng, Jianlin
    Fang, Hai
    Goughl, Julian
    Koskinen, Patrik
    Toronen, Petri
    Nokso-Koivisto, Jussi
    Holm, Liisa
    Cozzetto, Domenico
    Buchan, Daniel W. A.
    Bryson, Kevin
    Jones, David T.
    Limaye, Bhakti
    Inamdar, Harshal
    Datta, Avik
    Manjari, Sunitha K.
    Joshi, Rajendra
    Chitale, Meghana
    Kihara, Daisuke
    Lisewski, Andreas M.
    Erdin, Serkan
    Venner, Eric
    Lichtarge, Olivier
    Rentzsch, Robert
    Yang, Haixuan
    Romero, Alfonso E.
    Bhat, Prajwal
    Paccanaro, Alberto
    Hamp, Tobias
    Kassner, Rebecca
    Seemayer, Stefan
    Vicedo, Esmeralda
    Schaefer, Christian
    NATURE METHODS, 2013, 10 (03) : 221 - 227
  • [42] A large-scale evaluation of computational protein function prediction
    Radivojac P.
    Clark W.T.
    Oron T.R.
    Schnoes A.M.
    Wittkop T.
    Sokolov A.
    Graim K.
    Funk C.
    Verspoor K.
    Ben-Hur A.
    Pandey G.
    Yunes J.M.
    Talwalkar A.S.
    Repo S.
    Souza M.L.
    Piovesan D.
    Casadio R.
    Wang Z.
    Cheng J.
    Fang H.
    Gough J.
    Koskinen P.
    Törönen P.
    Nokso-Koivisto J.
    Holm L.
    Cozzetto D.
    Buchan D.W.A.
    Bryson K.
    Jones D.T.
    Limaye B.
    Inamdar H.
    Datta A.
    Manjari S.K.
    Joshi R.
    Chitale M.
    Kihara D.
    Lisewski A.M.
    Erdin S.
    Venner E.
    Lichtarge O.
    Rentzsch R.
    Yang H.
    Romero A.E.
    Bhat P.
    Paccanaro A.
    Hamp T.
    Kaßner R.
    Seemayer S.
    Vicedo E.
    Schaefer C.
    Nature Methods, 2013, 10 (3) : 221 - 227
  • [43] Drug initiatives to improve cognitive function
    Marder, Stephen R.
    JOURNAL OF CLINICAL PSYCHIATRY, 2006, 67 : 31 - 35
  • [44] Computational method for protein function prediction by constructing protein interaction network dictionary
    Jin, HJ
    Cho, HG
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2006, 20 (02) : 285 - 295
  • [45] Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery
    Kanakaveti, Vishnupriya
    Shanmugam, Anusuya
    Ramakrishnan, C.
    Anoosha, P.
    Sakthivel, R.
    Rayala, S. K.
    Gromiha, M. Michael
    ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY, VOL 121, 2020, 121 : 25 - 47
  • [46] AlphaFold2 protein structure prediction: Implications for drug discovery
    Borkakoti, Neera
    Thornton, Janet M.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 78
  • [47] Chapter 21. The role of protein structure prediction in drug discovery
    Jones, DT
    Swindells, MB
    Fagan, R
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 36, 2001, 36 : 211 - 225
  • [48] Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery
    Murakami, Yoichi
    Tripathi, Lokesh P.
    Prathipati, Philip
    Mizuguchi, Kenji
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 44 : 134 - 142
  • [49] Computational Social Science: Discovery and Prediction
    Ciflikli, Gokhan
    POLITICAL STUDIES REVIEW, 2017, 15 (04) : 649 - 650
  • [50] Computational Social Science: Discovery and Prediction
    de Marchi, Scott
    Page, Scotte E.
    PERSPECTIVES ON POLITICS, 2016, 14 (04) : 1169 - 1170