Image Modeling using Tree Structured Conditional Random Fields

被引:0
|
作者
Awasthi, Pranjal [1 ]
Gagrani, Aakanksha [2 ]
Ravindran, Balaraman [2 ]
机构
[1] IBM India Res Lab, New Delhi, India
[2] IIT Madras, Dept CSE, Madras, Tamil Nadu, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a discriminative framework based on conditional random fields for stochastic modeling of images in a hierarchical fashion. The main advantage of the proposed framework is its ability to incorporate a rich set of interactions among the image sites. We achieve this by inducing a hierarchy of hidden variables over the given label field. The proposed tree like structure of our model eliminates the need for a huge parameter space and at the same time permits the use of exact and efficient inference procedures based on belief propagation. We demonstrate the generality of our approach by applying it to two important computer vision tasks, namely image labeling and object detection. The model parameters are trained using the contrastive divergence algorithm. We report the performance on real world images and compare it with the existing approaches.
引用
收藏
页码:2060 / 2065
页数:6
相关论文
共 50 条
  • [41] Weakly Supervised Cervical Histopathological Image Classification Using Multilayer Hidden Conditional Random Fields
    Li, Chen
    Chen, Hao
    Xue, Dan
    Hu, Zhijie
    Zhang, Le
    He, Liangzi
    Xu, Ning
    Qi, Shouliang
    Ma, He
    Sun, Hongzan
    INFORMATION TECHNOLOGY IN BIOMEDICINE, 2019, 1011 : 209 - 221
  • [42] Retrieving Semantic Image Using Shape Descriptors and Latent-Dynamic Conditional Random Fields
    Elmezain, Mahmoud
    Ibrahem, Hani M.
    COMPUTER JOURNAL, 2021, 64 (12): : 1876 - 1885
  • [43] Tree-structured Markov random fields with Poisson marginal distributions
    Cote, Benjamin
    Cossette, Helene
    Marceau, Etienne
    JOURNAL OF MULTIVARIATE ANALYSIS, 2025, 207
  • [44] Classifying Behavioral Attributes Using Conditional Random Fields
    Vrigkas, Michalis
    Nikou, Christophoros
    Kakadiadis, Ioannis A.
    ARTIFICIAL INTELLIGENCE: METHODS AND APPLICATIONS, 2014, 8445 : 95 - 104
  • [45] Clause boundary identification using conditional random fields
    Ram, R. Vijay Sundar
    Devi, Sobha Lalitha
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2008, 4919 : 140 - 150
  • [46] Handwritten word recognition using conditional random fields
    Shetty, Shravya
    Srinivasan, Harish
    Srihari, Sargur
    ICDAR 2007: NINTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2007, : 1098 - 1102
  • [47] Detecting DDoS Attacks Using Conditional Random Fields
    Liu, Yun
    Jiang, Siyu
    Yuan, Xiaojie
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 522 - 526
  • [48] Conrad: Gene prediction using conditional random fields
    DeCaprio, David
    Vinson, Jade P.
    Pearson, Matthew D.
    Montgomery, Philip
    Doherty, Matthew
    Galagan, James E.
    GENOME RESEARCH, 2007, 17 (09) : 1389 - 1398
  • [49] Assessing map quality using conditional random fields
    Chandran-Ramesh, Manjari
    Newman, Paul
    FIELD AND SERVICE ROBOTICS: RESULTS OF THE 6TH INTERNATIONAL CONFERENCE, 2008, 42 : 35 - 48
  • [50] Named Entity Recognition using Conditional Random Fields
    Patil, Nita
    Patil, Ajay
    Pawar, B., V
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1181 - 1188