An application of Reversible-Jump MCMC to multivariate spherical Gaussian mixtures

被引:0
|
作者
Marrs, AD [1 ]
机构
[1] Def Evaluat & Res Agcy, Signal & Informat Proc Dept, Gt Malvern WR14 3PS, England
关键词
D O I
暂无
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Applications of Gaussian mixture models occur frequently in the fields of statistics and artificial neural networks. One of the key issues arising from any mixture model application is how to estimate the optimum number of mixture components. This paper extends the Reversible-Jump Markov Chain Monte Carlo (MCMC) algorithm to the case of multivariate spherical Gaussian mixtures using a hierarchical prior model. Using this method the number of mixture components is no longer fixed but becomes a parameter of the model which we shall estimate. The Reversible-Jump MCMC algorithm is capable of moving between parameter subspaces which correspond to models with different numbers of mixture components. As a result a sample from the full joint distribution of all unknown model parameters is generated. The technique is then demonstrated on a simulated example and a well known vowel dataset.
引用
收藏
页码:577 / 583
页数:7
相关论文
共 50 条
  • [41] Reversible jump MCMC to identify dropout mechanism in longitudinal data
    Baghfalaki, T.
    Farahani, E. Jalali
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (11) : 2717 - 2733
  • [42] Microlensing model inference with normalising flows and reversible jump MCMC
    Keehan, D.
    Yarndley, J.
    Rattenbury, N.
    ASTRONOMY AND COMPUTING, 2022, 41
  • [43] Multitarget Tracking with IP Reversible Jump MCMC-PF
    Bocquel, Melanie
    Driessen, Hans
    Bagchi, Arun
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 556 - 563
  • [44] A bayesian approach to map QTLs using reversible jump MCMC
    da Silva, Joseane Padilha
    Leandro, Roseli Aparecida
    CIENCIA E AGROTECNOLOGIA, 2009, 33 (04): : 1061 - 1070
  • [45] An MCMC Based EM Algorithm for Mixtures of Gaussian Processes
    Wu, Di
    Chen, Ziyi
    Ma, Jinwen
    ADVANCES IN NEURAL NETWORKS - ISNN 2015, 2015, 9377 : 327 - 334
  • [46] Smart pilot points using reversible-jump Markov-chain Monte Carlo
    Jimenez, S.
    Mariethoz, G.
    Brauchler, R.
    Bayer, P.
    WATER RESOURCES RESEARCH, 2016, 52 (05) : 3966 - 3983
  • [47] Reversible jump MCMC for joint detection and estimation of sources in colored noise
    Larocque, JR
    Reilly, JP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 231 - 240
  • [48] Bayesian conformational analysis of ring molecules through reversible jump MCMC
    Nolsoe, K
    Kessler, M
    Pérez, J
    Madsen, H
    JOURNAL OF CHEMOMETRICS, 2005, 19 (08) : 412 - 426
  • [49] Malware Family Discovery Using Reversible Jump MCMC Sampling of Regimes
    Bolton, Alexander D.
    Heard, Nicholas A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1490 - 1502
  • [50] Bayesian Volterra system identification using reversible jump MCMC algorithm
    Karakus, O.
    Kuruoglu, E. E.
    Altinkaya, M. A.
    SIGNAL PROCESSING, 2017, 141 : 125 - 136