Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

被引:0
|
作者
Yurtsever, Alp [1 ]
Udell, Madeleine [2 ]
Tropp, Joel A. [3 ]
Cevher, Volkan [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Cornell, Ithaca, NY USA
[3] CALTECH, Pasadena, CA 91125 USA
关键词
PHASE RETRIEVAL; ALGORITHMS; PROGRAMS; GRADIENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper concerns a fundamental class of convex matrix optimization problems. It presents the first algorithm that uses optimal storage and provably computes a low-rank approximation of a solution. In particular, when all solutions have low rank, the algorithm converges to a solution. This algorithm, SketchyCGM, modifies a standard convex optimization scheme, the conditional gradient method, to store only a small randomized sketch of the matrix variable. After the optimization terminates, the algorithm extracts a low-rank approximation of the solution from the sketch. In contrast to non-convex heuristics, the guarantees for SketchyCGM do not rely on statistical models for the problem data. Numerical work demonstrates the benefits of SketchyCGM over heuristics.
引用
收藏
页码:1188 / 1196
页数:9
相关论文
共 50 条
  • [21] Fixed-rank matrix factorizations and Riemannian low-rank optimization
    Mishra, Bamdev
    Meyer, Gilles
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 591 - 621
  • [22] Fixed-rank matrix factorizations and Riemannian low-rank optimization
    Bamdev Mishra
    Gilles Meyer
    Silvère Bonnabel
    Rodolphe Sepulchre
    Computational Statistics, 2014, 29 : 591 - 621
  • [23] MATRIX LOW-RANK TRUST REGION POLICY OPTIMIZATION
    Rozada, Sergio
    Marques, Antonio G.
    2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 406 - 410
  • [24] Matrix Completion Based on Non-Convex Low-Rank Approximation
    Nie, Feiping
    Hu, Zhanxuan
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (05) : 2378 - 2388
  • [25] Low-Rank Solution of Convex Relaxation for Optimal Power Flow Problem
    Sojoudi, Somayeh
    Madani, Ramtin
    Lavaei, Javad
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2013, : 636 - 641
  • [26] Computing Optimal Low-Rank Matrix Approximations for Image Processing
    Chung, Julianne
    Chung, Matthias
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 670 - 674
  • [27] Ensemble clustering with low-rank optimal Laplacian matrix learning
    Xu, Jiaxuan
    Li, Taiyong
    APPLIED SOFT COMPUTING, 2024, 150
  • [28] NysADMM: faster composite convex optimization via low-rank approximation
    Zhao, Shipu
    Frangella, Zachary
    Udell, Madeleine
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [29] Parameter Optimization for Low-Rank Matrix Recovery in Hyperspectral Imaging
    Wolfmayr, Monika
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [30] On critical points of quadratic low-rank matrix optimization problems
    Uschmajew, Andre
    Vandereycken, Bart
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2626 - 2651