EMERGENCE OF TIME-DEPENDENT POINT INTERACTIONS IN POLARON MODELS

被引:7
|
作者
Carlone, Raffaele [1 ]
Correggi, Michele [2 ]
Falconi, Marco [2 ]
Olivieri, Marco [3 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, MSA, I-80126 Naples, Italy
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Karlsruher Technol, Fak Math, D-76128 Karlsruhe, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
semiclassical analysis; zero-range interactions; Schrodinger operators with singular potentials; quantum field models; CLASSICAL FIELD LIMIT; SCATTERING THEORY; IONIZATION; EQUATION; STATE;
D O I
10.1137/20M1381344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics of the three-dimensional polaron-a quantum particle coupled to bosonic fields-in the quasi-classical regime. In this case, the fields are very intense and the corresponding degrees of freedom can be treated semiclassically. We prove that in such a regime the effective dynamics for the quantum particles is approximated by the one generated by a time-dependent point interaction, i.e., a singular time-dependent perturbation of the Laplacian supported in a point. As a by-product, we also show that the unitary dynamics of a time-dependent point interaction can be approximated in strong operator topology by the one generated by time-dependent Schrodinger operators with suitably rescaled regular potentials.
引用
收藏
页码:4657 / 4691
页数:35
相关论文
共 50 条
  • [31] TIME-DEPENDENT MODELS OF MAGNETIZED PAIR PLASMAS
    COPPI, PS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1992, 258 (04) : 657 - 683
  • [32] Structured learning in time-dependent Cox models
    Wang, Guanbo
    Lian, Yi
    Yang, Archer Y.
    Platt, Robert W.
    Wang, Rui
    Perreault, Sylvie
    Dorais, Marc
    Schnitzer, Mireille E.
    STATISTICS IN MEDICINE, 2024, 43 (17) : 3164 - 3183
  • [33] TIME-DEPENDENT CORONA MODELS - SCALING LAWS
    KOREVAAR, P
    MARTENS, PCH
    ASTRONOMY & ASTROPHYSICS, 1989, 226 (01): : 203 - 208
  • [34] Nonlinear Compartment Models with Time-Dependent Parameters
    Merker, Jochen
    Kunsch, Benjamin
    Schuldt, Gregor
    MATHEMATICS, 2021, 9 (14)
  • [35] RISK ANALYSIS AND TIME-DEPENDENT FLOOD MODELS
    NACHTNEBEL, HP
    KONECNY, F
    JOURNAL OF HYDROLOGY, 1987, 91 (3-4) : 295 - 318
  • [36] TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A*
    Dodds-Eden, Katie
    Sharma, Prateek
    Quataert, Eliot
    Genzel, Reinhard
    Gillessen, Stefan
    Eisenhauer, Frank
    Porquet, Delphine
    ASTROPHYSICAL JOURNAL, 2010, 725 (01): : 450 - 465
  • [37] Perspectives on integer programming for time-dependent models
    Boland, Natashia L.
    Savelsbergh, Martin W. P.
    TOP, 2019, 27 (02) : 147 - 173
  • [39] Competing risks models and time-dependent covariates
    Adrian Barnett
    Nick Graves
    Critical Care, 12
  • [40] TIME-DEPENDENT CORONA MODELS - CORONAE WITH ACCRETION
    KOREVAAR, P
    ASTRONOMY & ASTROPHYSICS, 1989, 226 (01) : 209 - 214