Machine learning classification of multiple sclerosis in children using optical coherence tomography

被引:9
|
作者
Ciftci Kavaklioglu, Beyza [1 ,2 ]
Erdman, Lauren [3 ,4 ]
Goldenberg, Anna [3 ,4 ,5 ]
Kavaklioglu, Can [6 ]
Alexander, Cara [3 ]
Oppermann, Hannah M. [3 ,7 ]
Patel, Amish [3 ]
Hossain, Soaad [3 ,5 ,8 ]
Berenbaum, Tara [9 ]
Yau, Olivia [9 ]
Yea, Carmen [9 ]
Ly, Mina [9 ]
Costello, Fiona [10 ,11 ]
Mah, Jean K. [12 ]
Reginald, Arun [13 ,14 ]
Banwell, Brenda [15 ]
Longoni, Giulia [1 ,16 ,17 ]
Ann Yeh, E. [1 ,16 ,17 ]
机构
[1] Hosp Sick Children, SickKids Res Inst, Neurosci & Mental Hlth Program, 555 Univ Ave, Toronto, ON M5G 1X8, Canada
[2] Univ Manitoba, Rady Fac Hlth Sci, Max Rady Coll Med, Dept Internal Med, Winnipeg, MB, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[4] Vector Inst, Toronto, ON, Canada
[5] Univ Toronto, Temerty Ctr AI Res & Educ Med, Toronto, ON, Canada
[6] Ryerson Univ, Dept Mech & Ind Engn, Toronto, ON, Canada
[7] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[8] Environ Analyt, Toronto, ON, Canada
[9] Hosp Sick Children, Dept Neurosci & Mental Hlth, Div Neurol, Toronto, ON, Canada
[10] Univ Calgary, Hotchkiss Brain Inst, Dept Clin Neurosci, Calgary, AB, Canada
[11] Univ Calgary, Dept Surg Ophthalmol, Calgary, AB, Canada
[12] Univ Calgary, Cumming Sch Med, Dept Pediat, Calgary, AB, Canada
[13] Univ Toronto, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[14] Hosp Sick Children, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[15] Univ Penn, Childrens Hosp Philadelphia, Perelman Sch Med, Div Neurol, Philadelphia, PA 19104 USA
[16] Hosp Sick Children, Div Neurol, Toronto, ON, Canada
[17] Univ Toronto, Dept Pediat, Toronto, ON, Canada
关键词
Multiple sclerosis; pediatric; optical coherence tomography; supervised learning; retinal nerve fiber layer thickness; FIBER LAYER THICKNESS; VISUAL-ACUITY; DIAGNOSIS; NEURITIS; REVISIONS; CRITERIA; CNS;
D O I
10.1177/13524585221112605
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: In children, multiple sclerosis (MS) is the ultimate diagnosis in only 1/5 to 1/3 of cases after a first episode of central nervous system (CNS) demyelination. As the visual pathway is frequently affected in MS and other CNS demyelinating disorders (DDs), structural retinal imaging such as optical coherence tomography (OCT) can be used to differentiate MS. Objective: This study aimed to investigate the utility of machine learning (ML) based on OCT features to identify distinct structural retinal features in children with DDs. Methods: This study included 512 eyes from 187 (n(eyes) = 374) children with demyelinating diseases and 69 (n(eyes) = 138) controls. Input features of the analysis comprised of 24 auto-segmented OCT features. Results: Random Forest classifier with recursive feature elimination yielded the highest predictive values and identified DDs with 75% and MS with 80% accuracy, while multiclass distinction between MS and monophasic DD was performed with 64% accuracy. A set of eight retinal features were identified as the most important features in this classification. Conclusion: This study demonstrates that ML based on OCT features can be used to support a diagnosis of MS in children.
引用
收藏
页码:2253 / 2262
页数:10
相关论文
共 50 条
  • [31] Vessel Density Features of Optical Coherence Tomography Angiography for Classification of Optic Neuropathies Using Machine Learning
    Jalili, Jalil
    Nadimi, Mohadeseh
    Jafari, Behzad
    Esfandiari, Amirreza
    Mojarad, Mohadeseh
    Subramanian, Prem S.
    Fard, Masoud Aghsaei
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2024, 44 (01) : 41 - 46
  • [32] Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features
    Cavaliere, Carlo
    Vilades, Elisa
    Alonso-Rodriguez, Ma C.
    Rodrigo, Maria Jesus
    Pablo, Luis Emilio
    Miguel, Juan Manuel
    Lopez-Guillen, Elena
    Morla, Eva Ma Sanchez
    Boquete, Luciano
    Garcia-Martin, Elena
    SENSORS, 2019, 19 (23)
  • [33] Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques
    Perez del Palomar, Amaya
    Cegonino, Jose
    Montolio, Alberto
    Orduna, Elvira
    Vilades, Elisa
    Sebastian, Berta
    Pablo, Luis E.
    Garcia-Martin, Elena
    PLOS ONE, 2019, 14 (05):
  • [34] Optical coherence tomography in diagnosis and monitoring multiple sclerosis
    Kucharczuk, Jan
    Maciejek, Zdzislaw
    Sikorski, Bartosz L.
    NEUROLOGIA I NEUROCHIRURGIA POLSKA, 2018, 52 (02) : 140 - 149
  • [35] Angiography with optical coherence tomography as a biomarker in multiple sclerosis
    Cordon, Beatriz
    Vilades, Elisa
    Orduna, Elvira
    Satue, Maria
    Perez-Velilla, Javier
    Sebastian, Berta
    Polo, Vicente
    Larrosa, Jose Manuel
    Pablo, Luis Emilio
    Garcia-Martin, Elena
    PLOS ONE, 2020, 15 (12):
  • [36] Optical coherence tomography and disease subtype in multiple sclerosis
    Pulicken, M.
    Gordon-Lipkin, E.
    Balcer, L. J.
    Frohman, E.
    Cutter, G.
    Calabresi, P. A.
    NEUROLOGY, 2007, 69 (22) : 2085 - 2092
  • [37] Optical coherence tomography for retinal imaging in multiple sclerosis
    Zimmermann, Hanna
    Oberwahrenbrock, Timm
    Brandt, Alexander U.
    Paul, Friedemann
    Doerr, Jan
    DEGENERATIVE NEUROLOGICAL AND NEUROMUSCULAR DISEASE, 2014, 4 : 153 - 162
  • [38] Optical Coherence Tomography Detection of Neurodegeneration in Multiple Sclerosis
    Lidster, Katie
    Baker, David
    CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS, 2012, 11 (05) : 518 - 527
  • [39] FAMILIAL MULTIPLE SCLEROSIS: AN OPTICAL COHERENCE TOMOGRAPHY STUDY
    Manzano, B.
    Martin, N.
    Noval, S.
    Oreja-Guevara, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2011, 18 : 526 - 526
  • [40] Classification system from Optical Coherence Tomography using transfer learning
    Asvial, Muhamad
    Silalahi, Tobias Ivandito Margogo
    Laagu, Muh. Asnoer
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, 70 (04) : 871 - 877