Machine learning classification of multiple sclerosis in children using optical coherence tomography

被引:9
|
作者
Ciftci Kavaklioglu, Beyza [1 ,2 ]
Erdman, Lauren [3 ,4 ]
Goldenberg, Anna [3 ,4 ,5 ]
Kavaklioglu, Can [6 ]
Alexander, Cara [3 ]
Oppermann, Hannah M. [3 ,7 ]
Patel, Amish [3 ]
Hossain, Soaad [3 ,5 ,8 ]
Berenbaum, Tara [9 ]
Yau, Olivia [9 ]
Yea, Carmen [9 ]
Ly, Mina [9 ]
Costello, Fiona [10 ,11 ]
Mah, Jean K. [12 ]
Reginald, Arun [13 ,14 ]
Banwell, Brenda [15 ]
Longoni, Giulia [1 ,16 ,17 ]
Ann Yeh, E. [1 ,16 ,17 ]
机构
[1] Hosp Sick Children, SickKids Res Inst, Neurosci & Mental Hlth Program, 555 Univ Ave, Toronto, ON M5G 1X8, Canada
[2] Univ Manitoba, Rady Fac Hlth Sci, Max Rady Coll Med, Dept Internal Med, Winnipeg, MB, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[4] Vector Inst, Toronto, ON, Canada
[5] Univ Toronto, Temerty Ctr AI Res & Educ Med, Toronto, ON, Canada
[6] Ryerson Univ, Dept Mech & Ind Engn, Toronto, ON, Canada
[7] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[8] Environ Analyt, Toronto, ON, Canada
[9] Hosp Sick Children, Dept Neurosci & Mental Hlth, Div Neurol, Toronto, ON, Canada
[10] Univ Calgary, Hotchkiss Brain Inst, Dept Clin Neurosci, Calgary, AB, Canada
[11] Univ Calgary, Dept Surg Ophthalmol, Calgary, AB, Canada
[12] Univ Calgary, Cumming Sch Med, Dept Pediat, Calgary, AB, Canada
[13] Univ Toronto, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[14] Hosp Sick Children, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[15] Univ Penn, Childrens Hosp Philadelphia, Perelman Sch Med, Div Neurol, Philadelphia, PA 19104 USA
[16] Hosp Sick Children, Div Neurol, Toronto, ON, Canada
[17] Univ Toronto, Dept Pediat, Toronto, ON, Canada
关键词
Multiple sclerosis; pediatric; optical coherence tomography; supervised learning; retinal nerve fiber layer thickness; FIBER LAYER THICKNESS; VISUAL-ACUITY; DIAGNOSIS; NEURITIS; REVISIONS; CRITERIA; CNS;
D O I
10.1177/13524585221112605
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: In children, multiple sclerosis (MS) is the ultimate diagnosis in only 1/5 to 1/3 of cases after a first episode of central nervous system (CNS) demyelination. As the visual pathway is frequently affected in MS and other CNS demyelinating disorders (DDs), structural retinal imaging such as optical coherence tomography (OCT) can be used to differentiate MS. Objective: This study aimed to investigate the utility of machine learning (ML) based on OCT features to identify distinct structural retinal features in children with DDs. Methods: This study included 512 eyes from 187 (n(eyes) = 374) children with demyelinating diseases and 69 (n(eyes) = 138) controls. Input features of the analysis comprised of 24 auto-segmented OCT features. Results: Random Forest classifier with recursive feature elimination yielded the highest predictive values and identified DDs with 75% and MS with 80% accuracy, while multiclass distinction between MS and monophasic DD was performed with 64% accuracy. A set of eight retinal features were identified as the most important features in this classification. Conclusion: This study demonstrates that ML based on OCT features can be used to support a diagnosis of MS in children.
引用
收藏
页码:2253 / 2262
页数:10
相关论文
共 50 条
  • [1] Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography
    Montolio, Alberto
    Martin-Gallego, Alejandro
    Cegonino, Jose
    Orduna, Elvira
    Vilades, Elisa
    Garcia-Martin, Elena
    Perez del Palomar, Amaya
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [2] Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography
    Montolío, Alberto
    Martín-Gallego, Alejandro
    Cegoñino, José
    Orduna, Elvira
    Vilades, Elisa
    Garcia-Martin, Elena
    Palomar, Amaya Pérez del
    Computers in Biology and Medicine, 2021, 133
  • [3] Machine Learning Utility for Optical Coherence Tomography in Multiple Sclerosis Is the Future Now?
    Toosy, Ahmed T.
    Eshaghi, Arman
    NEUROLOGY, 2022, 99 (11) : 453 - 454
  • [4] Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis
    Chalkias, Ioannis-Nikolaos
    Bakirtzis, Christos
    Pirounides, Demetrios
    Boziki, Marina Kleopatra
    Grigoriadis, Nikolaos
    HEALTHCARE, 2022, 10 (08)
  • [5] Optical coherence tomography and optical coherence tomography angiography in multiple sclerosis
    Gad A.H.E.
    Abd El Hamid N.A.
    El-Mofty R.M.A.-M.
    El Ghoneimy L.A.T.
    The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 59 (1)
  • [6] The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis
    Kenney, Rachel C.
    Liu, Mengling
    Hasanaj, Lisena
    Joseph, Binu
    Abu Al-Hassan, Abdullah
    Balk, Lisanne J.
    Behbehani, Raed
    Brandt, Alexander
    Calabresi, Peter A.
    Frohman, Elliot
    Frohman, Teresa C.
    Havla, Joachim
    Hemmer, Bernhard
    Jiang, Hong
    Knier, Benjamin
    Korn, Thomas
    Leocani, Letizia
    Martinez-Lapiscina, Elena Hernandez
    Papadopoulou, Athina
    Paul, Friedemann
    Petzold, Axel
    Pisa, Marco
    Villoslada, Pablo
    Zimmermann, Hanna
    Thorpe, Lorna E.
    Ishikawa, Hiroshi
    Schuman, Joel S.
    Wollstein, Gadi
    Chen, Yu
    Saidha, Shiv
    Galetta, Steven
    Balcer, Laura J.
    NEUROLOGY, 2022, 99 (11) : E1100 - E1112
  • [7] Optical Coherence Tomography in Multiple Sclerosis
    Graves, Jennifer S.
    SEMINARS IN NEUROLOGY, 2019, 39 (06) : 711 - 717
  • [8] Optical coherence tomography in multiple sclerosis
    Josefine Britze
    Jette Lautrup Frederiksen
    Eye, 2018, 32 : 884 - 888
  • [9] Optical Coherence Tomography in Multiple Sclerosis
    Hanson, James V. M.
    Lukas, Sebastian C.
    Pless, Misha
    Schippling, Sven
    SEMINARS IN NEUROLOGY, 2016, 36 (02) : 177 - 184
  • [10] Optical coherence tomography in multiple sclerosis
    Frohman, Elliot
    Costello, Fiona
    Zivadinov, Robert
    Stuve, Olaf
    Conger, Amy
    Winslow, Heather
    Trip, Anand
    Frohman, Teresa
    Balcer, Laura
    LANCET NEUROLOGY, 2006, 5 (10): : 853 - 863