Asymptotics and Local Constancy of Characters of p-adic Groups

被引:3
|
作者
Kim, Ju-Lee [1 ]
Shin, Sug Woo [2 ,3 ]
Templier, Nicolas [4 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
[4] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
MINIMAL K-TYPES; DISCRETE-SERIES CHARACTERS; FINITE SIMPLE-GROUPS; SUPERCUSPIDAL REPRESENTATIONS; CLASSICAL-GROUPS; FIELD; TAME; THEOREM;
D O I
10.1007/978-3-319-41424-9_7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study quantitative aspects of trace characters, Theta(pi) of reductive p-adic groups when the representation pi varies. Our approach is based on the local constancy of characters and we survey some other related results. We formulate a conjecture on the behavior of, Theta(pi) relative to the formal degree of pi, which we are able to prove in the case where pi is a tame supercuspidal. The proof builds on J.=K. Yu's construction and the structure of Moy-Prasad subgroups.
引用
收藏
页码:259 / 295
页数:37
相关论文
共 50 条