Asymptotics and Local Constancy of Characters of p-adic Groups
被引:3
|
作者:
Kim, Ju-Lee
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USAMIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Kim, Ju-Lee
[1
]
Shin, Sug Woo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South KoreaMIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Shin, Sug Woo
[2
,3
]
Templier, Nicolas
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Math, Ithaca, NY 14853 USAMIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Templier, Nicolas
[4
]
机构:
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
In this paper we study quantitative aspects of trace characters, Theta(pi) of reductive p-adic groups when the representation pi varies. Our approach is based on the local constancy of characters and we survey some other related results. We formulate a conjecture on the behavior of, Theta(pi) relative to the formal degree of pi, which we are able to prove in the case where pi is a tame supercuspidal. The proof builds on J.=K. Yu's construction and the structure of Moy-Prasad subgroups.