Locating points in the pentagonal rectangular tiling of the hyperbolic plane

被引:0
|
作者
Chelghoum, K [1 ]
Margenstern, M [1 ]
Martin, B [1 ]
Pecci, I [1 ]
机构
[1] Univ Metz, LITA, F-57045 Metz, France
关键词
hyperbolic plane; tiling; location of points;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an approach to locating points in the hyperbolic plane. Our technique follows the splitting of the hyperbolic plane which generates the pentagrid, i.e. the tiling of the hyperbolic plane with regular rectangular pentagons, see [2,5]. It uses also other aspects of the technique which was initiated in [2]: the spanning tree of the dual graph of the pentagrid and the coding of the situation of the pentagons by the standard Fibonacci representation of the numbers being associated of the elements of the pentagrid. We provide algorithms which, from coordinates of a point p(x(p), y(p)) in the Poincare disk allow us to obtain the number of the pentagon which contains p(x(p), y(p)).
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [31] Critical wind velocity of hyperbolic paraboloid membrane roofs with rectangular plane
    Liu, Rui-Xia
    Yang, Qing-Shan
    Li, Zuo-Wei
    Gongcheng Lixue/Engineering Mechanics, 2005, 22 (05): : 105 - 110
  • [32] A tiling proof of Euler's Pentagonal Number Theorem and generalizations
    Eichhorn, Dennis
    Nam, Hayan
    Sohn, Jaebum
    RAMANUJAN JOURNAL, 2021, 54 (03): : 613 - 624
  • [33] A PENTAGONAL QUASI-PERIODIC TILING WITH FRACTAL ACCEPTANCE DOMAIN
    ZOBETZ, E
    ACTA CRYSTALLOGRAPHICA SECTION A, 1992, 48 : 328 - 335
  • [34] Gear-meshed tiling of surfaces with molecular pentagonal stars
    Ernst, K.-H. (karl-heinz.ernst@empa.ch), 1600, American Chemical Society (136):
  • [35] Molecular pentagonal tiling: self-assemblies of pentagonal-shaped macrocycles at liquid/solid interfaces
    Tahara, Kazukuni
    Balandina, Tanya
    Furukawa, Shuhei
    De Feyter, Steven
    Tobe, Yoshito
    CRYSTENGCOMM, 2011, 13 (18): : 5551 - 5558
  • [36] A tiling proof of Euler’s Pentagonal Number Theorem and generalizations
    Dennis Eichhorn
    Hayan Nam
    Jaebum Sohn
    The Ramanujan Journal, 2021, 54 : 613 - 624
  • [37] Isotopic tiling theory for hyperbolic surfaces
    Kolbe, Benedikt
    Evans, Myfanwy E.
    GEOMETRIAE DEDICATA, 2021, 212 (01) : 177 - 204
  • [38] Inflation rules for a chiral pentagonal quasiperiodic tiling of stars and hexes
    Chizhikov, Viacheslav A.
    PHYSICAL REVIEW B, 2024, 110 (17)
  • [39] Isotopic tiling theory for hyperbolic surfaces
    Benedikt Kolbe
    Myfanwy E. Evans
    Geometriae Dedicata, 2021, 212 : 177 - 204
  • [40] Pentagonal maps on the torus and the plane
    Maity, Dipendu
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 17 - 37