On equilibrium stability in the Sitnikov problem

被引:0
|
作者
Kalas, V. O. [1 ]
Krasil'nikov, P. S. [1 ]
机构
[1] Moscow Inst Aviat Technol, Moscow 125993, Russia
关键词
PERIODIC-ORBITS; FAMILIES; MOTIONS;
D O I
10.1134/S0010952511060049
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The problem of stability of the trivial equilibrium position in the Sitnikov problem is considered in the first approximation. The first approximation is shown to have the form of a linear second-order equation with time-periodic coefficient (the Hill-type equation). The equilibrium stability was studied on the basis of equation regularization in the vicinity of a singular point with subsequent calculation of the trace a of the monodromy matrix. The equilibrium stability is shown to be stable for almost all values of eccentricity e from the [0, 1] interval. The instability takes place on the discrete set of e values, when the mutipliers are multiple (with non-simple elementary divisors), e = 1 being a point of crowding of this set.
引用
收藏
页码:534 / 537
页数:4
相关论文
共 50 条
  • [41] Symmetric periodic solutions in the Sitnikov problem
    Ortega, Rafael
    ARCHIV DER MATHEMATIK, 2016, 107 (04) : 405 - 412
  • [42] Sitnikov problem in the cyclic kite configuration
    M. Shahbaz Ullah
    K. B. Bhatnagar
    M. R. Hassan
    Astrophysics and Space Science, 2014, 354 : 301 - 309
  • [43] A Global Analysis of the Generalized Sitnikov Problem
    Steven R. Chesley
    Celestial Mechanics and Dynamical Astronomy, 1999, 73 : 291 - 302
  • [44] The concentric Sitnikov problem: Circular case
    Ullah, M. Shahbaz
    Idrisi, M. Javed
    CHAOS SOLITONS & FRACTALS, 2023, 174
  • [45] On the families of periodic orbits of the Sitnikov problem
    Llibre, Jaume
    Ortega, Rafael
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02): : 561 - 576
  • [46] Symmetric periodic solutions in the Sitnikov problem
    Rafael Ortega
    Archiv der Mathematik, 2016, 107 : 405 - 412
  • [47] The photo-gravitational concentric Sitnikov problem
    Idrisi, M. Javed
    Ullah, M. Shahbaz
    ASTRONOMY AND COMPUTING, 2023, 45
  • [48] THE EXISTENCE OF TRANSVERSE HOMOCLINIC POINTS IN THE SITNIKOV PROBLEM
    DANKOWICZ, H
    HOLMES, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) : 468 - 483
  • [49] A high order perturbation analysis of the Sitnikov problem
    Hagel, J
    Lhotka, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 93 (1-4): : 201 - 228
  • [50] STABILITY OF POINTS OF EQUILIBRIUM IN RESTRICTED PROBLEM
    SZEBEHELY, V
    ASTRONOMICAL JOURNAL, 1967, 72 (01): : 7 - +