On the new translational shape-invariant potentials

被引:18
|
作者
Ramos, Arturo [1 ]
机构
[1] Univ Zaragoza, Dept Anal Econ, E-50005 Zaragoza, Spain
关键词
QUANTUM-MECHANICS; RICCATI EQUATION; POLYNOMIALS;
D O I
10.1088/1751-8113/44/34/342001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, several authors have found new translational shape-invariant potentials not present in classic classifications like those of Infeld and Hull. For example, Quesne on the one hand and Bougie, Gangopadhyaya and Mallow on the other have provided examples of them, consisting on deformations of the classical ones. We analyze the basic properties of the new examples and observe a compatibility equation which has to be satisfied by them. We study particular cases of such an equation and give more examples of new translational shape-invariant potentials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] SHAPE-INVARIANT POTENTIALS AND AN ASSOCIATED COHERENT-STATE
    FUKUI, T
    AIZAWA, N
    PHYSICS LETTERS A, 1993, 180 (4-5) : 308 - 313
  • [22] The Darboux transformation and algebraic deformations of shape-invariant potentials
    Gómez-Ullate, D
    Kamran, N
    Milson, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05): : 1789 - 1804
  • [23] SWKB and proper quantization conditions for translationally shape-invariant potentials
    Mahdi, Kamal
    Kasri, Y.
    Grandati, Y.
    Berard, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [24] SHAPE-INVARIANT POTENTIALS FOR SYSTEMS WITH MULTICOMPONENT WAVE-FUNCTIONS
    FUKUI, T
    PHYSICS LETTERS A, 1993, 178 (1-2) : 1 - 6
  • [25] Shape-invariant potentials depending on n parameters transformed by translation
    Cariñena, JF
    Ramos, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3467 - 3481
  • [26] An algebraic construction of generalized coherent states for shape-invariant potentials
    Aleixo, ANF
    Balantekin, AB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (35): : 8513 - 8528
  • [27] Symmetries and the compatibility condition for the new translational shape invariant potentials
    Ramos, Arturo
    PHYSICS LETTERS A, 2012, 376 (46) : 3499 - 3503
  • [28] Algebraic nature of shape-invariant and self-similar potentials
    Balantekin, AB
    Ribeiro, MAC
    Aleixo, ANF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (15): : 2785 - 2790
  • [29] Comment on 'The Darboux transformation and algebraic deformations of shape-invariant potentials
    Sinha, A
    Roy, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34): : 8401 - 8404
  • [30] SWKB and proper quantization conditions for translationally shape-invariant potentials
    Kamal Mahdi
    Y. Kasri
    Y. Grandati
    A. Bérard
    The European Physical Journal Plus, 131