Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial

被引:15
|
作者
Shu, Chang [1 ,2 ]
Chen, Qingguo [1 ]
Mei, Jinshuo [1 ]
Yin, Jinghua [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Univ, Tech Sch, Harbin 150086, Heilongjiang, Peoples R China
来源
MATERIALS RESEARCH EXPRESS | 2019年 / 6卷 / 05期
关键词
terahertz; graphene metamaterials; electromagnetically induced transparency; manipulation of amplitude; PLASMON-INDUCED TRANSPARENCY; KERR NONLINEARITY; LIGHT; IMPLEMENTATION; SURFACE;
D O I
10.1088/2053-1591/ab03a6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a novel EIT analogue consisting of metal-based resonator integrated with graphene is proposed, which can achieve tunable EIT-like effects in terahertz frequencies. For practical applications, a thin Si layer is grown on the resonator to provide a flat surface to transfer monolayer graphene using a wet transfer method. Numerical and theoretical investigations on the tunable EIT-like effect are carried out. The simulations reveal that EIT-like phenomenon is induced by coupling of bright-dark mode of metal-based resonator. Further investigations reveal that the amplitude of EIT window could be modulated by changing the Fermi level of graphene meanwhile the resonant frequencies exhibits slight shift. The physical mechanism underling the modulation phenomenon is mainly attributed to the damping rate of the dark mode and bright mode resonators, which is verified by theoretical analysis of classical two-particle model and absorption of proposed EIT-like analogue. The retrieved effective permittivity and permeability of the proposed metamaterial cell clearly exhibit dispersion in dependence of Fermi level of graphene. This work will offer a new perspective application in terahertz modulation and slow light devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure
    Xu, Kai-Da
    Xia, Shengpei
    Cai, Yijun
    Li, Jianxing
    Cui, Jianlei
    Chen, Chengying
    Zhou, Jianmei
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (11) : 1917 - 1922
  • [22] Electromagnetically Induced Transparency-Like Terahertz Graphene Metamaterial With Tunable Carrier Mobility
    Cao, Pengfei
    Li, Yuan
    Wu, Yuyao
    Yuan, Zhengnan
    Li, Shenglin
    Cheng, Lin
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 14799 - 14806
  • [23] Tunable and Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Metal-Graphene Terahertz Metamaterial
    Wang, Guanqi
    Zhang, Xianbin
    Wei, Xuyan
    Zhang, Gaoqi
    CRYSTALS, 2019, 9 (12):
  • [24] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [25] Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band
    Wang, Yue
    Leng, Yanbing
    Wang, Li
    Dong, Lianhe
    Liu, Shunrui
    Wang, Jun
    Sun, Yanjun
    APPLIED PHYSICS EXPRESS, 2018, 11 (06)
  • [26] Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial
    Zhang, Caihong
    Wu, Jingbo
    Jin, Biaobing
    Jia, Xiaoqing
    Kang, Lin
    Xu, Weiwei
    Wang, Huabing
    Chen, Jian
    Tonouchi, Masoyoshi
    Wu, Peiheng
    APPLIED PHYSICS LETTERS, 2017, 110 (24)
  • [27] An actively tunable multifrequency electromagnetically induced transparency in a terahertz metamaterial
    Li, Haiming
    Xu, Zhipeng
    Wang, Hongyang
    Chen, Jianping
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
  • [28] Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Zhou, Chaobiao
    Xu, Chen
    Xiao, Shuyuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 104 : 229 - 232
  • [29] Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial
    Liu, Chenxi
    Liu, Peiguo
    Bian, Lian
    Zhou, Qihui
    Li, Gaosheng
    Liu, Hanqin
    OPTICS COMMUNICATIONS, 2018, 410 : 17 - 24
  • [30] An actively tunable multifrequency electromagnetically induced transparency in a terahertz metamaterial
    Haiming Li
    Zhipeng Xu
    Hongyang Wang
    Jianping Chen
    Optical and Quantum Electronics, 2023, 55