Invariant Submanifolds of Hyperbolic Sasakian Manifolds and η-Ricci-Bourguignon Solitons

被引:12
|
作者
Chaubey, Sudhakar K. [1 ]
Siddiqi, M. Danish [2 ]
Prakasha, D. G. [3 ]
机构
[1] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[2] Jazan Univ, Coll Sci, Dept Math, Jazan, Saudi Arabia
[3] Davangere Univ, Dept Studies Math, Shivagangothri Campus, Davangere 577007, India
关键词
Hyperbolic Sasakian manifolds; invariant and totally geodesic submanifolds; minimal submanifolds; concircular vector field; Ricci-Bourguignon flows; eta-Ricci-Bourguignon solitons;
D O I
10.2298/FIL2202409C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We set the goal to study the properties of invariant submanifolds of the hyperbolic Sasakian manifolds. It is proven that a three-dimensional submanifold of a hyperbolic Sasakian manifold is totally geodesic if and only if it is invariant. Also, we discuss the properties of eta-Ricci-Bourguignon solitons on invariant submanifolds of the hyperbolic Sasakian manifolds. Finally, we construct a non-trivial example of a three-dimensional invariant submanifold of five-dimensional hyperbolic Sasakian manifold and validate some of our results.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 50 条
  • [31] Invariant Submanifolds of (ε)-Sasakian Manifolds
    Prakasha, D. G.
    Vanli, Aysel T.
    Nagaraja, M.
    Veeresha, P.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 346 - 356
  • [32] THE RICCI-BOURGUIGNON FLOW
    Catino, Giovanni
    Cremaschi, Laura
    Djadli, Zindine
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (02) : 337 - 370
  • [33] On the Ricci-Bourguignon flow
    Ho, Pak Tung
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (06)
  • [34] Geometry of almost contact metrics as an almost *-?-Ricci-Bourguignon solitons
    Dey, Santu
    Suh, Young Jin
    REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (07)
  • [35] RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH β-KENMOTSU STRUCTURE
    Chaubey, Sudhakar Kumar
    Suh, Young Jin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) : 341 - 358
  • [36] Some Characterizations on Gradient Almost r]-Ricci-Bourguignon Solitons
    Traore, Moctar
    Tastan, Hakan Mete
    Aydin, Sibel Gerdan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [37] On Ricci-Bourguignon solitons: Triviality, uniqueness and scalar curvature estimates
    Cunha, Antonio W.
    Lemos, Raquel
    Roing, Fernanda
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [38] Generalized Ricci-Bourguignon flow
    Azami, Shahroud
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 638 - 662
  • [39] η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds
    Naik, Devaraja Mallesha
    Venkatesha, V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (09)
  • [40] Certain paracontact metrics satisfying gradient ρ-Ricci-Bourguignon almost solitons
    Dey, Santu
    Ali, Akram
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025, 22 (03)