LIMIT CYCLES FROM A CUBIC REVERSIBLE SYSTEM VIA THE THIRD-ORDER AVERAGING METHOD

被引:0
|
作者
Peng, Linping [1 ]
Feng, Zhaosheng [2 ]
机构
[1] Beihang Univ, Minist Educ, Sch Math & Syst Sci, LIMB, Beijing 100191, Peoples R China
[2] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
基金
美国国家科学基金会;
关键词
Bifurcation; limit cycles; homogeneous perturbation; averaging method; cubic center; period annulus; HAMILTONIAN CENTERS; QUADRATIC CENTERS; PERTURBATIONS; BIFURCATION; SHAPE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] The number of limit cycles from a cubic center by the Melnikov function of any order
    Yang, Peixing
    Yu, Jiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (04) : 1463 - 1494
  • [42] GLOBAL BIFURCATIONS OF LIMIT CYCLES FOR A CUBIC SYSTEM
    孟争
    韩茂安
    顾圣士
    Annals of Differential Equations, 2000, (03) : 263 - 269
  • [43] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    Science China Mathematics, 1985, (01) : 35 - 46
  • [44] A cubic Kolmogorov system with six limit cycles
    Lloyd, NG
    Pearson, JM
    Saéz, E
    Szántó, I
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 445 - 455
  • [45] On the number and distribution of limit cycles in a cubic system
    Maoan, H
    Zhang, TH
    Hong, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4285 - 4292
  • [46] LIMIT CYCLES FOR A CUBIC GENERALIZED LIENARD SYSTEM
    Zhao, Jinyuan
    Li, Jun
    Wu, Kuilin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [47] DISTRIBUTION OF LIMIT CYCLES OF THE PLANAR CUBIC SYSTEM
    李继彬
    ScienceinChina,SerA., 1985, Ser.A.1985 (01) : 35 - 46
  • [48] LIMIT CYCLES AND CENTERS IN A CUBIC PLANAR SYSTEM
    Cherkas, Leonid
    Romanovski, Valery G.
    Xing, Yepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (12): : 4127 - 4135
  • [49] LIMIT-CYCLES IN A CUBIC SYSTEM WITH A CUSP
    XIAN, W
    KOOIJ, RE
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) : 1609 - 1622
  • [50] Twelve limit cycles in a cubic order planar system with Z2-symmetry
    Yu, P
    Han, M
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (03) : 515 - 526