Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization

被引:42
|
作者
Li, Ji-ming [1 ,2 ]
Qian, Yun-tao [1 ]
机构
[1] Zhejiang Univ, Sch Comp Sci & Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Police Coll, Hangzhou 310053, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral; Band selection; Clustering; Sparse nonnegative matrix factorization; CLASSIFICATION; ALGORITHMS; REGRESSION;
D O I
10.1631/jzus.C1000304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral bands. Band selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-cover classification and higher level image analysis. In this paper, we propose a new band selection algorithm using sparse nonnegative matrix factorization (sparse NMF). Though acting as a clustering method for band selection, sparse NMF need not consider the distance metric between different spectral bands, which is often the key step for most common clustering-based band selection methods. By imposing sparsity on the coefficient matrix, the bands' clustering assignments can be easily indicated through the largest entry in each column of the matrix. Experimental results showed that sparse NMF provides considerable insight into the clustering-based band selection problem and the selected bands are good for land-cover classification.
引用
收藏
页码:542 / 549
页数:8
相关论文
共 50 条
  • [21] Distributional Clustering Using Nonnegative Matrix Factorization
    Zhu, Zhenfeng
    Ye, Yangdong
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4705 - 4711
  • [22] Affinity Matrix Learning Via Nonnegative Matrix Factorization for Hyperspectral Imagery Clustering
    Qin, Yao
    Li, Biao
    Ni, Weiping
    Quan, Sinong
    Wang, Peizhong
    Bian, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 402 - 415
  • [23] Document clustering using nonnegative matrix factorization/
    Shahnaz, F
    Berry, MW
    Pauca, VP
    Plemmons, RJ
    INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (02) : 373 - 386
  • [24] Hierarchical Clustering of Hyperspectral Images Using Rank-Two Nonnegative Matrix Factorization
    Gillis, Nicolas
    Kuang, Da
    Park, Haesun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04): : 2066 - 2078
  • [25] HYPERSPECTRAL UNMIXING ALGORITHM BASED ON NONNEGATIVE MATRIX FACTORIZATION
    Bao, Wenxing
    Li, Qin
    Xin, Liping
    Qu, Kewen
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6982 - 6985
  • [26] Hyperspectral Unmixing Based on Constrained Nonnegative Matrix Factorization
    Jia Xiangxiang
    Guo Baofeng
    Ding Fanchang
    Xu Wenjie
    ACTA PHOTONICA SINICA, 2021, 50 (07)
  • [27] Clustering-Based Band Selection Using Structural Similarity Index and Entropy for Hyperspectral Image Classification
    Ghorbanian, Arsalan
    Maghsoudi, Yasser
    Mohammadzadeh, Ali
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 785 - 791
  • [28] Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Endmember Independence and Spatial Weighted Abundance
    Zhang, Jingyan
    Zhang, Xiangrong
    Jiao, Licheng
    REMOTE SENSING, 2021, 13 (12)
  • [29] Correntropy-Based Sparse Spectral Clustering for Hyperspectral Band Selection
    Sun, Weiwei
    Peng, Jiangtao
    Yang, Gang
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 484 - 488
  • [30] Total Variation Regularized Reweighted Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing
    He, Wei
    Zhang, Hongyan
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 3909 - 3921