LMI criteria for robust chaos synchronization of a class of chaotic systems

被引:86
|
作者
Chen, Fengxiang [1 ]
Zhang, Weidong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
parameters perturbation; robust synchronization; LMI (linear matrix inequality); chaotic system;
D O I
10.1016/j.na.2006.10.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the Lyapunov stability theory and LMI technique, a new sufficient criterion, formulated in the LMI form, is established in this paper for chaos robust synchronization by linear-state-feedback approach for a class of uncertain chaotic systems with different parameters perturbation and different external disturbances on both master system and slave system. The new sufficient criterion can guarantee that the slave system will robustly synchronize to the master system at an exponential convergence rate. Meanwhile, we also provide a criterion to find out proper feedback gain matrix K that is still a pending problem in literature [H. Zhang, X.K. Ma, Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos, Solitons and Fractals 21 (2004) 39-47]. Finally, the effectiveness of the two criteria proposed herein is verified and illustrated by the chaotic Murali-Lakshmanan-Chua system and Lorenz systems, respectively. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3384 / 3393
页数:10
相关论文
共 50 条
  • [21] Control and Synchronization for Uncertain Chaotic Systems with LMI Approach
    Deng, Lili
    Xu, Junqun
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1695 - 1700
  • [22] Division time chaos switch-synchronization for a class interrelated chaotic systems
    Yang-Zheng, Lu
    Chang-Sheng, Jiang
    Chang-Sheng, Lin
    ACTA PHYSICA SINICA, 2008, 57 (02) : 709 - 713
  • [23] Synchronization for a Class of Chaotic Systems
    Li, Lixiang
    Peng, Haipeng
    Yang, Yixian
    NEUROQUANTOLOGY, 2008, 6 (04) : 405 - 411
  • [24] Synchronization for a class of chaotic systems
    Yang, Tao
    Shao, Hui-He
    Wuli Xuebao/Acta Physica Sinica, 2002, 51 (04):
  • [25] Chaos switch-synchronization for a class of 4-D chaotic systems
    Liu Yang-Zheng
    Jiang Chang-Sheng
    Lin Chang-Sheng
    ACTA PHYSICA SINICA, 2007, 56 (02) : 707 - 712
  • [26] Division time chaos switch-synchronization for a class interrelated chaotic systems
    Liu, Yang-Zheng
    Jiang, Chang-Sheng
    Lin, Chang-Sheng
    Wuli Xuebao/Acta Physica Sinica, 2008, 57 (02): : 709 - 713
  • [27] Synchronization for a class of chaotic systems
    Yang, T
    Shao, HH
    ACTA PHYSICA SINICA, 2002, 51 (04) : 742 - 748
  • [28] Synchronization in a Class of Chaotic Systems
    Telenchana, J.
    Acosta, A.
    Garcia, P.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023,
  • [29] Robust synchronization for a class of fractional-order chaotic and hyperchaotic systems
    Li, Chunlai
    Su, Kalin
    Tong, Yaonan
    Li, Hongmin
    OPTIK, 2013, 124 (18): : 3242 - 3245
  • [30] Robust synchronization of a class of chaotic systems based on integral observer method
    Li Xiu-Chun
    Xu Wei
    Xiao Yu-Zhu
    ACTA PHYSICA SINICA, 2008, 57 (03) : 1465 - 1470