THE EFFECT OF DYNAMICAL ACCURACY FOR UNCERTAINTY PROPAGATION

被引:0
|
作者
Park, Inkwan [1 ,2 ]
Scheeres, Daniel J. [2 ]
Fujimoto, Kohei [3 ]
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, 429 UCB, Boulder, CO 80309 USA
[2] Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA
[3] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
关键词
ARTIFICIAL SATELLITE;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A major topic in the field of space situational awareness is to accurately map the uncertainty of an observed object, accounting for nonlinear relative dynamics using either analytic or numerical approaches. For analytic approaches, an open question exists regarding the importance of short-period terms in the analytic theory relative to the secular dynamics terms. This paper will explore this question using the classical Brouwer theory (CBT). Specifically, we discuss how well uncertainty propagation under the secular Brouwer theory (without short-period terms) compares to the CBT, and how the CBT compares to a fully numerical propagation.
引用
收藏
页码:933 / 958
页数:26
相关论文
共 50 条
  • [1] Effect of Dynamical Accuracy for Uncertainty Propagation of Perturbed Keplerian Motion
    Park, Inkwan
    Fujimoto, Kohei
    Scheeres, Daniel J.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (12) : 2287 - 2300
  • [2] Uncertainty propagation in dynamical systems
    Mezic, Igor
    Runolfsson, Thordur
    AUTOMATICA, 2008, 44 (12) : 3003 - 3013
  • [3] Dynamical Uncertainty Propagation with Noisy Quantum Parameters
    Dalgaard, Mogens
    Weidner, Carrie A.
    Motzoi, Felix
    PHYSICAL REVIEW LETTERS, 2022, 128 (15)
  • [4] Dynamical Uncertainty Propagation with Noisy Quantum Parameters Reply
    Arutyunov, Konstantin Yu.
    Lehtinen, Janne S.
    PHYSICAL REVIEW LETTERS, 2022, 128 (15)
  • [5] Coupled nonlinear dynamical systems: Asymptotic behavior and uncertainty propagation
    Mezic, I
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 1778 - 1783
  • [6] Accuracy of approximate methods of uncertainty propagation in seismic loss estimation
    Bradley, Brendon A.
    Lee, Dominic S.
    STRUCTURAL SAFETY, 2010, 32 (01) : 13 - 24
  • [7] Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems
    DeMars, Kyle J.
    Bishop, Robert H.
    Jah, Moriba K.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (04) : 1047 - 1057
  • [8] A Gaussian function network for uncertainty propagation through nonlinear dynamical system
    Singla, Puneet
    Singh, Tarunraj
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 851 - 863
  • [9] Data-Driven Approach for Uncertainty Propagation and Reachability Analysis in Dynamical Systems
    Matavalam, Amarsagar Reddy Ramapuram
    Vaidya, Umesh
    Ajjarapu, Venkataramana
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 3393 - 3398
  • [10] Graph decomposition methods for uncertainty propagation in complex, nonlinear interconnected dynamical systems
    Varigonda, S
    Kalmár-Nágy, T
    LaBarre, B
    Mezic, I
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 1794 - 1798