ZETA FUNCTIONS OF LATTICES OF THE SYMMETRIC GROUP

被引:2
|
作者
Hofmann, Tommy [1 ]
机构
[1] Univ Kaiserslautern, Dept Math, Postfach 3049, D-67663 Kaiserslautern, Germany
关键词
Integral representation; Symmetric group; Zeta function;
D O I
10.1080/00927872.2015.1044102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric group n+1 of degree n + 1 admits an n-dimensional irreducible Qn-module V corresponding to the hook partition (2, 1(n-1)). By the work of Craig and Plesken, we know that there are sigma(n + 1) many isomorphism classes of Zn+1-lattices which are rationally equivalent to V, where sigma denotes the divisor counting function. In the present article, we explicitly compute the Solomon zeta function of these lattices. As an application we obtain the Solomon zeta function of the Zn+1-lattice defined by the Specht basis.
引用
收藏
页码:2243 / 2255
页数:13
相关论文
共 50 条