ZETA FUNCTIONS OF LATTICES OF THE SYMMETRIC GROUP

被引:2
|
作者
Hofmann, Tommy [1 ]
机构
[1] Univ Kaiserslautern, Dept Math, Postfach 3049, D-67663 Kaiserslautern, Germany
关键词
Integral representation; Symmetric group; Zeta function;
D O I
10.1080/00927872.2015.1044102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric group n+1 of degree n + 1 admits an n-dimensional irreducible Qn-module V corresponding to the hook partition (2, 1(n-1)). By the work of Craig and Plesken, we know that there are sigma(n + 1) many isomorphism classes of Zn+1-lattices which are rationally equivalent to V, where sigma denotes the divisor counting function. In the present article, we explicitly compute the Solomon zeta function of these lattices. As an application we obtain the Solomon zeta function of the Zn+1-lattice defined by the Specht basis.
引用
收藏
页码:2243 / 2255
页数:13
相关论文
共 50 条
  • [1] ON LATTICES OF INTEGRAL GROUP ALGEBRAS AND SOLOMON ZETA FUNCTIONS
    Danz, Susanne
    Hofmann, Tommy
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 129 - 170
  • [2] Building lattices and zeta functions
    Deitmar, Anton
    Kang, Ming-Hsuan
    McCallum, Rupert
    ADVANCES IN GEOMETRY, 2020, 20 (02) : 249 - 272
  • [3] Spherical designs and zeta functions of lattices
    Coulangeon, Renaud
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [4] Symmetric functions and the Riemann zeta series
    Chu, WC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (12): : 1677 - 1689
  • [5] SYMMETRIC FUNCTIONS AND MULTIPLE ZETA VALUES
    Chu, Wenchang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) : 426 - 437
  • [6] Symmetric Tornheim double zeta functions
    Takashi Nakamura
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 5 - 14
  • [7] Symmetric Tornheim double zeta functions
    Nakamura, Takashi
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 5 - 14
  • [8] Geometric zeta functions of locally symmetric spaces
    Deitmar, A
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) : 887 - 926
  • [9] Uniqueness of dynamical zeta functions and symmetric products
    Eduardo Blanco Gómez
    Luis Hernández-Corbato
    Francisco R. Ruiz del Portal
    Journal of Fixed Point Theory and Applications, 2016, 18 : 689 - 719
  • [10] Uniqueness of dynamical zeta functions and symmetric products
    Blanco Gomez, Eduardo
    Hernandez-Corbato, Luis
    Ruiz del Portal, Francisco R.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2016, 18 (04) : 689 - 719