Uncertainty Analysis of the Dynamic Responses of a Transmission Tower-Line System Subjected to Cable Rupture

被引:12
|
作者
Tian, Li [1 ]
Liu, Kaiming [1 ]
机构
[1] Shandong Univ, Sch Civil Engn, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Conductor rupture load; Transmission tower-line system; Dynamic response; Uncertainty analysis;
D O I
10.1061/(ASCE)AS.1943-5525.0001195
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Because transmission tower-line systems are always exposed to the natural environment, such structures are vulnerable to various meteorological conditions, and the rupture of a transmission line is a particularly serious potential accident. Although many studies have been conducted on the dynamic responses of transmission towers subjected to cable rupture, few have considered the uncertainties that exist in the structures of transmission towers. To investigate the effects of the uncertainties in material properties and geometric parameters on the dynamic responses caused by cable rupture, a finite-element (FE) model is established in Abaqus; then deterministic, sensitivity, and probability analyses are conducted in succession. This study reveals that the yield strength and geometric size of diagonal members have significant effects on the responses of a transmission tower subjected to conductor rupture. In addition, based on the probability analysis, the results of the deterministic analysis are reliable, and structures under a conductor rupture load have a substantial probability of being partially damaged, which means that current design codes must be improved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Effects of Bolt Slip on the Dynamic Characteristics of Transmission Tower-line System
    Zhao, Xiu-zhen
    Chen, Hai-bo
    Ye, Min
    Huang, Ying-qing
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENTAL ENGINEERING (SEEE 2016), 2016,
  • [22] Dynamic Failure Mode Analysis for a Transmission Tower-Line System Induced by Strong Winds
    Liu, Shizeng
    Zhang, Wentong
    Li, Qiang
    Yan, Shicheng
    Zhang, Shihong
    Li, Chao
    Li, Lixiao
    ENERGIES, 2024, 17 (18)
  • [23] Dynamic Response of Conductor Breakage for Oxytropis Transmission Tower-Line System
    Li, Ran
    Gao, Qiang
    ADVANCES IN MECHATRONICS TECHNOLOGY, 2011, 43 : 165 - 168
  • [24] Analysis on Galloping of iced conductor of Transmission Tower-line System
    Di Yu-xian
    Zhu Kuan-jun
    Liu Bin
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 734 - 739
  • [25] Probabilistic failure analysis of 400 kV transmission tower-line system subjected to wind and ice hazards
    Mahmoudi, Amir
    Nasrollahzadeh, Kourosh
    Jafari, Mohammad Ali
    WIND AND STRUCTURES, 2021, 33 (03) : 251 - 264
  • [26] Fragility Analysis of a Transmission Tower-Line System Subjected to Wind and Ice Loads Considering Fatigue Damage
    Li, Jia-Xiang
    Zuo, Yu-Shun
    Wang, Ling-Peng
    Dong, Zhi-Qian
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2025, 25 (07)
  • [27] Nonlinear inelastic responses of transmission tower-line system under downburst wind
    Yang, S. C.
    Hong, H. P.
    ENGINEERING STRUCTURES, 2016, 123 : 490 - 500
  • [28] Progressive collapse analysis of transmission tower-line system under earthquake
    Wang, W. M. (wangwenming87110@163.com), 1600, Hong Kong Institute of Steel Construction (09):
  • [29] Collapse Analysis of a Transmission Tower-Line System Under Typhoon Doksuri
    Zhang, Xin
    Xie, Qiang
    COMPUTATIONAL AND EXPERIMENTAL SIMULATIONS IN ENGINEERING, ICCES 2024-VOL 2, 2025, 173 : 367 - 375
  • [30] Dynamic Characteristics of Transmission Tower-Line Coupled System Considering Torsional Effect
    Zhou, Ying
    Liang, Shuguo
    Zou, Lianghao
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2020, 14 (03) : 331 - 346