Zeros of complex homogeneous polynomials

被引:1
|
作者
Lourenco, Mary Lillian [1 ]
Tocha, Neusa Nogas [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, BR-05315970 Sao Paulo, Brazil
来源
LINEAR & MULTILINEAR ALGEBRA | 2007年 / 55卷 / 05期
关键词
d-homogeneous polynomial; zeros of polynomials;
D O I
10.1080/03081080600628273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that for any positive integers n and d, there is a positive integer m such that for every d- homogeneous polynomial P: C-m -> C has an n-dimensional subspace X-P, X-P subset of P-1 (0). We discuss the problem of finding a good bound for m as a function of d and n.
引用
收藏
页码:463 / 469
页数:7
相关论文
共 50 条
  • [21] Localization of the complex zeros of parametrized families of polynomials
    Louboutin, Stephane R.
    JOURNAL OF SYMBOLIC COMPUTATION, 2008, 43 (04) : 304 - 309
  • [22] RESTRICTION OF ZEROS OF POLYNOMIALS TO SECTORS OF COMPLEX PLANE
    GOODMAN, R
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (07): : 905 - &
  • [24] Bounds for the zeros of complex-coefficient polynomials
    Gulzar S.
    Rather N.A.
    Thakur K.A.
    Annales mathématiques du Québec, 2017, 41 (1) : 105 - 110
  • [25] Zeros and approximations of Holant polynomials on the complex plane
    Katrin Casel
    Philipp Fischbeck
    Tobias Friedrich
    Andreas Göbel
    J. A. Gregor Lagodzinski
    computational complexity, 2022, 31
  • [26] On distribution of zeros of random polynomials in complex plane
    Ibragimov, Ildar
    Zaporozhets, Dmitry
    Springer Proceedings in Mathematics and Statistics, 2013, 33 : 303 - 323
  • [27] THE PROJECTIONS OF THE ZEROS OF EXPONENTIAL POLYNOMIALS WITH COMPLEX FREQUENCIES
    Mas, A.
    Sepulcre, J. M.
    COLLOQUIUM MATHEMATICUM, 2019, 158 (01) : 91 - 102
  • [28] A METHOD OF ENCLOSING ZEROS OF POLYNOMIALS WITH COMPLEX COEFFICIENTS
    FISCHER, H
    COMPUTING, 1969, 4 (02) : 125 - &
  • [29] Clustering Complex Zeros of Triangular Systems of Polynomials
    Rémi Imbach
    Marc Pouget
    Chee Yap
    Mathematics in Computer Science, 2021, 15 : 271 - 292
  • [30] The zeros of complex differential-difference polynomials
    Xinling Liu
    Kai Liu
    Louchuan Zhou
    Advances in Difference Equations, 2014