Improving Cross-lingual Text Classification with Zero-shot Instance-Weighting

被引:0
|
作者
Li, Irene [1 ]
Sen, Prithviraj [2 ]
Zhu, Huaiyu [2 ]
Li, Yunyao [2 ]
Radev, Dragomir [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
[2] IBM Res Almaden, San Jose, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-lingual text classification (CLTC) is a challenging task made even harder still due to the lack of labeled data in low-resource languages. In this paper, we propose zero-shot instance-weighting, a general model-agnostic zero-shot learning framework for improving CLTC by leveraging source instance weighting. It adds a module on top of pre-trained language models for similarity computation of instance weights, thus aligning each source instance to the target language. During training, the framework utilizes gradient descent that is weighted by instance weights to update parameters. We evaluate this framework over seven target languages on three fundamental tasks and show its effectiveness and extensibility, by improving on F1 score up to 4% in single-source transfer and 8% in multi-source transfer. To the best of our knowledge, our method is the first to apply instance weighting in zeroshot CLTC. It is simple yet effective and easily extensible into multi-source transfer.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] Zero-Shot Cross-lingual Aphasia Detection using Automatic Speech Recognition
    Chatzoudis, Gerasimos
    Plitsis, Manos
    Stamouli, Spyridoula
    Dimou, Athanasia-Lida
    Katsamanis, Nassos
    Katsouros, Vassilis
    INTERSPEECH 2022, 2022, : 2178 - 2182
  • [42] Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond
    Artetxe, Mikel
    Schwenk, Holger
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2019, 7 : 597 - 610
  • [43] Label modification and bootstrapping for zero-shot cross-lingual hate speech detection
    Irina Bigoulaeva
    Viktor Hangya
    Iryna Gurevych
    Alexander Fraser
    Language Resources and Evaluation, 2023, 57 : 1515 - 1546
  • [44] Zero-shot cross-lingual transfer language selection using linguistic similarity
    Eronen, Juuso
    Ptaszynski, Michal
    Masui, Fumito
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [45] Transfer language selection for zero-shot cross-lingual abusive language detection
    Eronen, Juuso
    Ptaszynski, Michal
    Masui, Fumito
    Arata, Masaki
    Leliwa, Gniewosz
    Wroczynski, Michal
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [46] Why Does Zero-Shot Cross-Lingual Generation Fail? An Explanation and a Solution
    Li, Tianjian
    Murray, Kenton
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 12461 - 12476
  • [47] The Impact of Cross-Lingual Adjustment of Contextual Word Representations on Zero-Shot Transfer
    Efimov, Pavel
    Boytsov, Leonid
    Arslanova, Elena
    Braslavski, Pavel
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III, 2023, 13982 : 51 - 67
  • [48] Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization
    Ponti, Edoardo M.
    Vulic, Ivan
    Glavas, Goran
    Mrksic, Nikola
    Korhonen, Anna
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 282 - 293
  • [49] Zero-Shot Cross-Lingual Knowledge Transfer in VQA via Multimodal Distillation
    Weng, Yu
    Dong, Jun
    He, Wenbin
    Chaomurilige
    Liu, Xuan
    Liu, Zheng
    Gao, Honghao
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 11
  • [50] Feature Aggregation in Zero-Shot Cross-Lingual Transfer Using Multilingual BERT
    Chen, Beiduo
    Guo, Wu
    Liu, Quan
    Tao, Kun
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1428 - 1435