A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic

被引:9
|
作者
Costeseque, Guillaume [1 ,2 ]
Lebacque, Jean-Patrick [2 ]
Monneau, Regis [1 ]
机构
[1] Univ Paris Est, Ecole Ponts ParisTech, CERMICS, F-77455 Champs Sur Marne 2, Marne La Vallee, France
[2] Univ Paris Est, IFSTTAR, GRETTIA, F-77447 Champs Sur Marne 2, Marne La Vallee, France
关键词
DISCONTINUOUS GALERKIN; VISCOSITY SOLUTIONS; CONSERVATION-LAWS; ROAD NETWORKS; MODEL; FLOW; APPROXIMATION; ALGORITHMS; WAVES;
D O I
10.1007/s00211-014-0643-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider first order Hamilton-Jacobi (HJ) equations posed on a "junction", that is to say the union of a finite number of half-lines with a unique common point. For this continuous HJ problem, we propose a finite difference scheme and prove two main results. As a first result, we show bounds on the discrete gradient and time derivative of the numerical solution. Our second result is the convergence (for a subsequence) of the numerical solution towards a viscosity solution of the continuous HJ problem, as the mesh size goes to zero. When the solution of the continuous HJ problem is unique, we recover the full convergence of the numerical solution. We apply this scheme to compute the densities of cars for a traffic model. We recover the well-known Godunov scheme outside the junction point and we give a numerical illustration.
引用
收藏
页码:405 / 447
页数:43
相关论文
共 50 条
  • [41] Singularities of solutions of Hamilton-Jacobi equations
    Cannarsa, Piermarco
    Cheng, Wei
    arXiv, 2021,
  • [42] Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations
    Kao, CY
    Osher, S
    Qian, JL
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 196 (01) : 367 - 391
  • [43] HAMILTON-JACOBI EQUATIONS ON AN EVOLVING SURFACE
    Deckelnick, Klaus
    Elliott, Charles M.
    Miura, Tatsu-Hiko
    Styles, Vanessa
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2635 - 2664
  • [44] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309
  • [45] Symplectic topology and Hamilton-Jacobi equations
    Viterbo, C
    Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 2006, 217 : 439 - 459
  • [46] On the extension of the solutions of Hamilton-Jacobi equations
    Albano, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1421 - 1425
  • [47] Parabolic perturbations of Hamilton-Jacobi equations
    Sinai, Y
    FUNDAMENTA MATHEMATICAE, 1998, 157 (2-3) : 299 - 303
  • [48] The relaxing schemes for Hamilton-Jacobi equations
    Tang, HZ
    Wu, HM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) : 231 - 240
  • [49] GENERALIZED CHARACTERISTICS OF HAMILTON-JACOBI EQUATIONS
    SUBBOTIN, AI
    TARASYEV, AM
    USHAKOV, VN
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (02) : 157 - 163
  • [50] Nonuniqueness in systems of Hamilton-Jacobi equations
    Ostrov, DN
    OPTIMAL CONTROL, STABILIZATON AND NONSMOOTH ANALYSIS, 2004, 301 : 49 - 59