Ulinastatin Alleviates Rhabdomyolysis-Induced Acute Kidney Injury by Suppressing Inflammation and Apoptosis via Inhibiting TLR4/NF-κB Signaling Pathway

被引:18
|
作者
Wang, Jinxiang [1 ,2 ]
Xu, Guowu [1 ,2 ]
Jin, Heng [1 ,2 ]
Chai, Yanfen [2 ]
Yang, Xinyue [3 ]
Liu, Ziquan [1 ,3 ]
Hou, Shike [1 ,3 ]
Fan, Haojun [1 ,3 ]
机构
[1] Tianjin Univ, Wenzhou Safety Emergency Inst, Wenzhou 325000, Zhejiang, Peoples R China
[2] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, Tianjin 300052, Peoples R China
[3] Tianjin Univ, Inst Disaster & Emergency Med, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
ulinastatin; rhabdomyolysis; acute kidney injury; TLR4/NF-kappa B; inflammation; apoptosis; PROTECTS; CELLS;
D O I
10.1007/s10753-022-01675-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Acute kidney injury (AKI) is an important complication of rhabdomyolysis (RM), but there is lack of effective treatments. Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions. The aim of this research was to investigate the effect and potential mechanism of UTI on RM-induced AKI (RM-AKI). We established RM-induced AKI model and myoglobin (Mb)-stimulated NRK-52E cell model. In vivo, twenty-four rats were randomly divided into three groups (n = 8): control, RM-AKI, and RM-AKI + UTI. In vitro, the NRK-52E cells were divided into six groups according to the different treatment method. Mb-stimulated NRK-52E cells were treated with UTI or si-TLR4 transfection to characterize the mechanisms of UTI in RM-AKI. Indicators of the kidney injury, cell viability, cell cycle, oxidative stress, inflammation, apoptosis, and TLR4/NF-kappa B signaling pathway were assessed. In vivo and in vitro, UTI significantly decreased the expression of TLR4 and p65. In vivo, UTI significantly improved renal function and reduced inflammatory reaction and kidney injury. In vitro, UTI protected NRK-52E cells from Mb stimulation by suppressing cell cytotoxicity, cell cycle inhibition, overproduction of ROS, inflammation, and apoptosis. Additionally, UTI played a protective role by downregulating the TLR4 expression. The results indicate that UTI alleviates RM-AKI by suppressing the inflammatory response and apoptosis via inhibiting TLR4/NF-kappa B signaling pathway. Our study provides a new mechanism for the protective effect of UTI on RM-AKI.
引用
收藏
页码:2052 / 2065
页数:14
相关论文
共 50 条
  • [21] Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway
    Sun, Xiujiang
    Li, Peng
    Qu, Xiaoyi
    Liu, Wenguang
    PHARMACEUTICAL BIOLOGY, 2021, 59 (01) : 1326 - 1333
  • [22] Protective effect of hydroxysafflor yellow A against acute kidney injury via the TLR4/NF-κB signaling pathway
    Bai, Juan
    Zhao, Jinyi
    Cui, Dongxiao
    Wang, Fan
    Song, Ying
    Cheng, Lianghua
    Gao, Kai
    Wang, Jin
    Li, Long
    Li, Shujun
    Jia, Yanyan
    Wen, Aidong
    SCIENTIFIC REPORTS, 2018, 8
  • [23] Protective effect of hydroxysafflor yellow A against acute kidney injury via the TLR4/NF-κB signaling pathway
    Juan Bai
    Jinyi Zhao
    Dongxiao Cui
    Fan Wang
    Ying Song
    Lianghua Cheng
    Kai Gao
    Jin Wang
    Long Li
    Shujun Li
    Yanyan Jia
    Aidong Wen
    Scientific Reports, 8
  • [24] Betulin attenuates kidney injury in septic rats through inhibiting TLR4/NF-κB signaling pathway
    Zhao, Hongyu
    Zheng, Qiang
    Hu, Xiao
    Shen, Haitao
    Li, Fengchun
    LIFE SCIENCES, 2016, 144 : 185 - 193
  • [25] Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF-κB Pathway
    Long, Yu
    Xiang, Yan
    Liu, Songyu
    Zhang, Yulu
    Wan, Jinyan
    Yang, Qiyue
    Cui, Mingquan
    Ci, Zhimin
    Li, Nan
    Peng, Wei
    MEDIATORS OF INFLAMMATION, 2020, 2020
  • [26] Lidanpaidu prescription alleviates lipopolysaccharide-induced acute kidney injury by suppressing the NF-κB signaling pathway
    Zhang, Fan
    Lu, Shan
    Jin, Siyi
    Chen, Keli
    Li, Juan
    Huang, Bisheng
    Cao, Yan
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 99 : 245 - 252
  • [27] miR-22 alleviates sepsis-induced acute kidney injury via targeting the HMGB1/TLR4/NF-κB signaling pathway
    Zhang, Jie
    Chen, Qi
    Dai, Zhuquan
    Pan, Huibin
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2023, 55 (02) : 409 - 421
  • [28] miR-22 alleviates sepsis-induced acute kidney injury via targeting the HMGB1/TLR4/NF-κB signaling pathway
    Jie Zhang
    Qi Chen
    Zhuquan Dai
    Huibin Pan
    International Urology and Nephrology, 2023, 55 : 409 - 421
  • [29] Baicalin Magnesium Salt Attenuates Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting of TLR4/NF-κB Signaling Pathway
    Zhang, Lin
    Yang, Lukun
    Xie, Xiaowei
    Zheng, Hongyue
    Zheng, Hangsheng
    Zhang, Lizong
    Liu, Cuizhe
    Piao, Ji-Gang
    Li, Fanzhu
    JOURNAL OF IMMUNOLOGY RESEARCH, 2021, 2021
  • [30] Stellate ganglion block alleviates postoperative cognitive dysfunction via inhibiting TLR4/NF-κB signaling pathway
    Yu, Kun
    Zhang, Xue-Kang
    Xiong, Han-Chun
    Liang, Si -Si
    Lu, Zi-Yun
    Wu, Yong-Qiang
    Chen, Yu
    Xiao, Su-Jun
    NEUROSCIENCE LETTERS, 2023, 807