Preparation and growth mechanism of β-SiC nanowires by using a simplified thermal evaporation method

被引:22
|
作者
Liu, Haitao [1 ]
Huang, Zhaohui [1 ]
Fang, Minghao [1 ]
Liu, Yan-gai [1 ]
Wu, Xiaowen [1 ]
机构
[1] China Univ Geosci, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Chemical vapor deposition; Vapor-solid growth mechanism; SiC; Nanowires; SILICON-CARBIDE NANOWIRES; LARGE-SCALE SYNTHESIS; NANOSTRUCTURES; TEMPERATURE; MORPHOLOGY; ARRAYS;
D O I
10.1016/j.jcrysgro.2015.02.085
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
beta-SiC nanowires were synthesized by using an improved simple and low-cost thermal evaporation process at 1500 degrees C, without argon protect and catalyst assistant. The process simplifies the chemical vapor deposition method, which makes it easier to operate and industrialize. X-ray diffraction, Field emission scanning electron microscopy, high-resolution transmission electron microscopy and energy dispersive spectrum were employed to characterize the as-synthesized products. The beta-SiC nanowires are about 50-100 nm in diameter, up to several micrometers long and usually grow along [111] direction with a thin oxide shell. A vapor-solid growth mechanism of the nanowires is proposed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 24
页数:5
相关论文
共 50 条
  • [31] Microstructure evolution and growth mechanism of core-shell silicon-based nanowires by thermal evaporation of SiO
    Liu, Bing
    Sun, Jia
    Zhou, Lei
    Zhang, Pei
    Yan, Chenxin
    Fu, Qiangang
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (09) : 1417 - 1430
  • [32] Selective growth of Ge nanowires by low-temperature thermal evaporation
    Sutter, Eli
    Ozturk, Birol
    Sutter, Peter
    NANOTECHNOLOGY, 2008, 19 (43)
  • [33] Thermal evaporation growth and the luminescence property of TiO2 nanowires
    Wu, JM
    Shih, HC
    Wu, WT
    Tseng, YK
    Chen, IC
    JOURNAL OF CRYSTAL GROWTH, 2005, 281 (2-4) : 384 - 390
  • [34] Fabrication and Growth Mechanism of Zn1-xCdxO Nanotubes by Thermal Evaporation Method
    Liu Bo
    Wang Fa-Zhan
    Zhang Gu-Zhong
    Zhao Chao
    Yuan Si-Cong
    JOURNAL OF INORGANIC MATERIALS, 2009, 24 (05) : 998 - 1002
  • [35] Shadow mask assisted direct growth of ZnO nanowires as a sensing medium for surface acoustic wave devices using a thermal evaporation method
    Mohanan, Ajay Achath
    Parthiban, R.
    Ramakrishnan, N.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (02)
  • [36] Gan Nanowire Growth by Thermal Evaporation Method
    Shekari, L.
    Abu Hassan, H.
    Hassan, Z.
    SOLID STATE SCIENCE AND TECHNOLOGY XXVI, 2012, 501 : 276 - 280
  • [37] A simplified reactive thermal evaporation method for indium tin oxide electrodes
    Belo, G. S.
    da Silva, B. J. P.
    de Vasconcelos, E. A.
    de Azevedo, W. M.
    da Silva, E. F., Jr.
    APPLIED SURFACE SCIENCE, 2008, 255 (03) : 755 - 757
  • [38] Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder
    Baek, Yunho
    Yong, Kijung
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (03): : 1213 - 1218
  • [39] PREPARATION OF ULTRAFINE POWDER OF SIC BY A MODIFIED GAS-EVAPORATION METHOD
    ANDO, Y
    OHKOHCHI, M
    UYEDA, R
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1980, 19 (11) : L693 - L694
  • [40] Catalytic growth of GaN nanowires using evaporation process.
    Park, J
    Singh, RK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U726 - U726