An efficient Bayesian approach for Gaussian Bayesian network structure learning

被引:4
|
作者
Han, Shengtong
Zhang, Hongmei [1 ,2 ]
Homayouni, Ramin
Karmaus, Wilfried
机构
[1] Univ Memphis, Bioinformat Program, Sch Publ Hlth, Memphis, TN 38152 USA
[2] Univ Memphis, Ctr Translat Informat, Memphis, TN 38152 USA
基金
美国国家卫生研究院;
关键词
DNA methylation; Gaussian DAG; MCMC; EQUIVALENCE CLASSES; GRAPHICAL MODELS; PC-ALGORITHM; INFERENCE; SAMPLER;
D O I
10.1080/03610918.2016.1143103
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a Bayesian computing algorithm to infer Gaussian directed acyclic graphs (DAGs). It has the ability of escaping local modes and maintaining adequate computing speed compared to existing methods. Simulations demonstrated that the proposed algorithm has low false positives and false negatives in comparison to an algorithm applied to DAGs. We applied the algorithm to an epigenetic dataset to infer DAG's for smokers and nonsmokers.
引用
收藏
页码:5070 / 5084
页数:15
相关论文
共 50 条
  • [31] Transfer Learning-based Hybrid Approach for Bayesian Network Structure Learning
    Jose, Sonu
    Louis, Sushil
    Dascalu, Sergiu
    Liu, Siming
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (07)
  • [32] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [33] Bayesian Structure Learning in Sparse Gaussian Graphical Models
    Mohammadi, A.
    Wit, E. C.
    BAYESIAN ANALYSIS, 2015, 10 (01): : 109 - 138
  • [34] Efficient parameter learning of Bayesian network classifiers
    Nayyar A. Zaidi
    Geoffrey I. Webb
    Mark J. Carman
    François Petitjean
    Wray Buntine
    Mike Hynes
    Hans De Sterck
    Machine Learning, 2017, 106 : 1289 - 1329
  • [35] A Pre-screening Approach for Faster Bayesian Network Structure Learning
    Rahier, Thibaud
    Marie, Sylvain
    Forbes, Florence
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT V, 2023, 13717 : 207 - 222
  • [36] iMMPC: A Local Search Approach for Incremental Bayesian Network Structure Learning
    Yasin, Amanullah
    Leray, Philippe
    ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011, 2011, 7014 : 401 - 412
  • [37] Bayesian Active Learning with Fully Bayesian Gaussian Processes
    Riis, Christoffer
    Antunes, Francisco
    Huttel, Frederik Boe
    Azevedo, Carlos Lima
    Pereira, Francisco Camara
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Efficient Sampling and Structure Learning of Bayesian Networks
    Kuipers, Jack
    Suter, Polina
    Moffa, Giusi
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 639 - 650
  • [39] Efficient Bayesian network structure learning via local Markov boundary search
    Gao, Ming
    Aragam, Bryon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [40] Feature Selection for Efficient Local-to-global Bayesian Network Structure Learning
    Yu, Kui
    Ling, Zhaolong
    Liu, Lin
    Li, Peipei
    Wang, Hao
    Li, Jiuyong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (02)