An efficient Bayesian approach for Gaussian Bayesian network structure learning

被引:4
|
作者
Han, Shengtong
Zhang, Hongmei [1 ,2 ]
Homayouni, Ramin
Karmaus, Wilfried
机构
[1] Univ Memphis, Bioinformat Program, Sch Publ Hlth, Memphis, TN 38152 USA
[2] Univ Memphis, Ctr Translat Informat, Memphis, TN 38152 USA
基金
美国国家卫生研究院;
关键词
DNA methylation; Gaussian DAG; MCMC; EQUIVALENCE CLASSES; GRAPHICAL MODELS; PC-ALGORITHM; INFERENCE; SAMPLER;
D O I
10.1080/03610918.2016.1143103
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a Bayesian computing algorithm to infer Gaussian directed acyclic graphs (DAGs). It has the ability of escaping local modes and maintaining adequate computing speed compared to existing methods. Simulations demonstrated that the proposed algorithm has low false positives and false negatives in comparison to an algorithm applied to DAGs. We applied the algorithm to an epigenetic dataset to infer DAG's for smokers and nonsmokers.
引用
收藏
页码:5070 / 5084
页数:15
相关论文
共 50 条
  • [1] A meta-Gaussian approach to learning non-Gaussian Bayesian network structure
    Zhu, H
    Beling, PA
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 1949 - 1954
  • [2] An Efficient Bayesian Network Structure Learning Strategy
    Joe Suzuki
    New Generation Computing, 2017, 35 : 105 - 124
  • [3] An Efficient Bayesian Network Structure Learning Strategy
    Suzuki, Joe
    NEW GENERATION COMPUTING, 2017, 35 (01) : 105 - 124
  • [4] An Incremental Structure Learning Approach for Bayesian Network
    Li, Shuohao
    Zhang, Jun
    Sun, Boliang
    Lei, Jun
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 4817 - 4822
  • [5] Learning Sparse Gaussian Bayesian Network Structure by Variable Grouping
    Yang, Jie
    Leung, Henry C. M.
    Yiu, S. M.
    Cai, Yunpeng
    Chin, Francis Y. L.
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 1073 - 1078
  • [6] A Bayesian Approach for Learning Bayesian Network Structures
    Zareifard, Hamid
    Rezaeitabar, Vahid
    Javidian, Mohammad Ali
    Yozgatligil, Ceylan
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) : 4434 - 4447
  • [7] Efficient and effective Bayesian network local structure learning
    Jianjun Yang
    Yunhai Tong
    Zitian Wang
    Shaohua Tan
    Frontiers of Computer Science, 2014, 8 : 527 - 536
  • [8] Efficient and effective Bayesian network local structure learning
    Yang, Jianjun
    Tong, Yunhai
    Wang, Zitian
    Tan, Shaohua
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (04) : 527 - 536
  • [9] FedGES: A Federated Learning Approach for Bayesian Network Structure Learning
    Torrijos, Pablo
    Gamez, Jose A.
    Puerta, Jose M.
    DISCOVERY SCIENCE, DS 2024, PT II, 2025, 15244 : 83 - 98
  • [10] RBNets: A Reinforcement Learning Approach for Learning Bayesian Network Structure
    Zheng, Zuowu
    Wang, Chao
    Gao, Xiaofeng
    Chen, Guihai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT III, 2023, 14171 : 193 - 208