DIFFUSION LIMIT OF FOKKER-PLANCK EQUATION WITH HEAVY TAIL EQUILIBRIA

被引:6
|
作者
Nasreddine, Elissar [1 ]
Puel, Marjolaine [2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Nice, Lab Dieudonne, F-06108 Nice 2, France
关键词
Fokker Plank; diffusion limit; heavy tail; Cauchy distribution; ANOMALOUS DIFFUSION; KINETIC-EQUATIONS; TRANSPORT;
D O I
10.1051/m2an/2014020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the diffusion limit of the Fokker-Planck equation of plasma physics, in which the equilibrium function decays towards zero at infinity like a negative power function. We prove that for an appropriate time scale, in a suitable weighted Sobolev space, the small mean free path limit gives rise to a diffusion equation.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [22] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [23] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [24] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [25] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [26] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [27] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [28] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [29] Computation of Fokker-Planck equation
    Yau, SST
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 643 - 650
  • [30] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111