Three-dimensional-poly(lactic acid) scaffolds coated with gelatin/magnesium-doped nano-hydroxyapatite for bone tissue engineering

被引:23
|
作者
Swetha, Sampath [1 ]
Balagangadharan, Kalimuthu [1 ]
Lavanya, Krishnaraj [1 ]
Selvamurugan, Nagarajan [1 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Sch Bioengn, Dept Biotechnol, Kattankulathur 603203, Tamil Nadu, India
关键词
bone tissue engineering; gelatin; three-dimensional-printing; nano-hydroxyapatite; poly(lactic acid); Runx2; IN-VITRO; REGENERATION; BIOMINERALIZATION; HYDROGEL; GELATIN; REPAIR;
D O I
10.1002/biot.202100282
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Treatment of critical-sized bone defects has progressively evolved over the years from metallic implants to more ingenious three-dimensional-based scaffolds. The use of three-dimensional scaffolds for bone regeneration from biodegradable polymers like poly(lactic acid) (PLA) is gaining popularity. Scaffolds with surface functionalization using gelatin (Gel) have the advantages of biocompatibility and cell adhesion. Nano-hydroxyapatite (nHAp) is one of the most promising implant materials utilized in orthopaedics. The osteogenic potential of the nHAp can be improved by the substitution of magnesium (Mg) ions onto the crystal lattice of nHAp. Thus, the goal of this work was to make three-dimensional-PLA scaffolds covered with Gel/Mg-nHAp for osteogenic effect. Methods and results: The designed three-dimensional-PLA/Gel/Mg-nHAp scaffolds were attributed to various characterizations for the examination of their physicochemical, mechanical properties, cyto-compatibility, and biodegradability as well as their ability to promote osteogenesis in vitro. Mouse mesenchymal stem cells (mMSCs) were cytocompatible with these scaffolds. The osteogenic potential of three-dimensional-PLA/Gel/Mg-nHAp scaffolds employing mMSCs was validated at the cellular and molecular levels. The three-dimensional-PLA/Gel/Mg-nHAp scaffolds stimulated the differentiation of mMSCs towards osteoblastic lineage. Conclusion: Based on these findings, we suggest that the three-dimensional-PLA/Gel/Mg-nHAp scaffolds' osteogenic capability may be advantageous in the mending of bone defects in orthopedic applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Poly(L-lactic acid)/Hydroxyapatite Nanocylinders as Nanofibrous Structure for Bone Tissue Engineering Scaffolds
    Lee, Jung Bok
    Park, Ha Na
    Ko, Wan-Kyu
    Bae, Min Soo
    Heo, Dong Nyoung
    Yang, Dae Hyeok
    Kwon, Il Keun
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (03) : 424 - 429
  • [32] Synthesis and characterisation of gelatin-nano hydroxyapatite composite scaffolds for bone tissue engineering
    Mobini, S.
    Javadpour, J.
    Hosseinalipour, M.
    Ghazi-Khansari, M.
    Khavandi, A.
    Rezaie, H. R.
    ADVANCES IN APPLIED CERAMICS, 2008, 107 (01) : 4 - 8
  • [33] Biocompatibility and physicochemical characteristics of poly(ε-caprolactone)/poly( lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    Li, Xin
    Zhang, Shujiang
    Zhang, Xiao
    Xie, Siyu
    Zhao, Guanghui
    Zhang, Lifen
    MATERIALS & DESIGN, 2017, 114 : 149 - 160
  • [34] Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content
    He, Shu
    Lin, Kai-Feng
    Sun, Zhen
    Song, Yue
    Zhao, Yi-Nan
    Wang, Zheng
    Bi, Long
    Liu, Jian
    ARTIFICIAL ORGANS, 2016, 40 (07) : E128 - E135
  • [35] Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering
    Pavia, Francesco Carfi
    Conoscenti, Gioacchino
    Greco, Silvia
    La Carrubba, Vincenzo
    Ghersi, Giulio
    Brucato, Valerio
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 119 : 945 - 953
  • [36] Evaluation of the novel three-dimensional porous poly (L-lactic acid)/ nano-hydroxyapatite composite scaffold
    Huang, Jianghong
    Xiong, Jianyi
    Liu, Jianquan
    Zhu, Weimin
    Chen, Jielin
    Duan, Li
    Zhang, Jufeng
    Wang, Daping
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S197 - S205
  • [37] Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering
    Jiang, Liuyun
    Li, Ye
    Xiong, Chengdong
    Su, Shengpei
    Ding, Haojie
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4890 - 4897
  • [38] Surface modification of PCL-gelatin-chitosan electrospun scaffold by nano-hydroxyapatite for bone tissue engineering
    Gautam, Sneh
    Purohit, Shiv Dutt
    Singh, Hemant
    Dinda, Amit Kumar
    Potdar, Pravin D.
    Sharma, Chhavi
    Chou, Chia -Fu
    Mishra, Narayan Chandra
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [39] Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend
    Radha, G.
    Manjubaashini, N.
    Balakumar, S.
    IN VITRO MODELS, 2023, 2 (05): : 125 - 151
  • [40] Cell biocompatibility of porous nano-hydroxyapatite/polyamide66 composite scaffolds for bone tissue engineering
    Deng, Zhennan
    Mo, Anchun
    Ma, Jianfeng
    Xian, Suqin
    Zhang, Dafeng
    Liu, Jinsong
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 1086 - +