Analytical approach to the Bose-polaron problem in one dimension

被引:71
|
作者
Volosniev, A. G. [1 ]
Hammer, H. -W. [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
关键词
RENORMALIZATION-GROUP; BLOCH OSCILLATIONS; FERMIONS; GAS;
D O I
10.1103/PhysRevA.96.031601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the ground-state properties of a one-dimensional bosonic system doped with an impurity (the so-called Bose polaron problem). We introduce a formalism that allows us to calculate analytically the thermodynamic zero-temperature properties of this system with weak and moderate boson-boson interaction strengths for any boson-impurity interaction. Our approach is validated by comparison to exact quantum Monte Carlo calculations. In addition, we test the method in finite-size systems using numerical results based upon the similarity renormalization group. We argue that the introduced approach provides a simple analytical tool for studies of strongly interacting impurity problems in one dimension.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Polaron and bipolaron dispersion curves in one dimension for intermediate coupling
    Eagles, D. M.
    Quick, R. M.
    Schauer, B.
    PHYSICAL REVIEW B, 2007, 75 (05):
  • [33] Quench Dynamics of the Interacting Bose Gas in One Dimension
    Iyer, Deepak
    Andrei, Natan
    PHYSICAL REVIEW LETTERS, 2012, 109 (11)
  • [34] Superfluid/Bose-glass transition in one dimension
    Ristivojevic, Zoran
    Petkovic, Aleksandra
    Le Doussal, Pierre
    Giamarchi, Thierry
    PHYSICAL REVIEW B, 2014, 90 (12)
  • [35] Self-consistent T-matrix approach to Bose-glass in one dimension
    Yashenkin, A. G.
    Utesov, O. I.
    Sizanov, A. V.
    Syromyatnikov, A. V.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 397 : 11 - 19
  • [36] The Mott Problem in One Dimension
    Stack, John D.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (03) : 788 - 806
  • [37] The Mott Problem in One Dimension
    John D. Stack
    International Journal of Theoretical Physics, 2014, 53 : 788 - 806
  • [38] Functional renormalisation group approach to the finite-temperature Bose polaron
    Isaule, Felipe
    EPL, 2024, 147 (06)
  • [39] A Different Theoretical Approach to the Spin Polaron Problem
    Danilo M. Yanga
    Augusto A. Morales
    Journal of Superconductivity, 2000, 13 : 929 - 931
  • [40] Mean-field construction for spectrum of one-dimensional Bose polaron
    Panochko, G.
    Pastukhov, V.
    ANNALS OF PHYSICS, 2019, 409