RosettaBackrub-a web server for flexible backbone protein structure modeling and design

被引:90
|
作者
Lauck, Florian [1 ]
Smith, Colin A. [1 ]
Friedland, Gregory F. [2 ,3 ]
Humphris, Elisabeth L. [4 ]
Kortemme, Tanja [1 ]
机构
[1] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[2] Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA
[3] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94551 USA
[4] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
CONFORMATIONAL VARIABILITY; COMPUTATIONAL REDESIGN; SEQUENCE DIVERSITY; STABILITY CHANGES; POINT MUTATIONS; PREDICTION; SPECIFICITY; DYNAMICS; DOCKING; FLEXIBILITY;
D O I
10.1093/nar/gkq369
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The RosettaBackrub server (http://kortemmelab.ucsf.edu/backrub) implements the Backrub method, derived from observations of alternative conformations in high-resolution protein crystal structures, for flexible backbone protein modeling. Backrub modeling is applied to three related applications using the Rosetta program for structure prediction and design: (I) modeling of structures of point mutations, (II) generating protein conformational ensembles and designing sequences consistent with these conformations and (III) predicting tolerated sequences at protein-protein interfaces. The three protocols have been validated on experimental data. Starting from a user-provided single input protein structure in PDB format, the server generates near-native conformational ensembles. The predicted conformations and sequences can be used for different applications, such as to guide mutagenesis experiments, for ensemble-docking approaches or to generate sequence libraries for protein design.
引用
收藏
页码:W569 / W575
页数:7
相关论文
共 50 条
  • [21] MacGen: A Web Server for Structure-Based Macrocycle Design
    Zhang, Zhihan
    Ke, Dongliang
    Jin, Chengshan
    Zhou, Weiyu
    Pan, Xiaolin
    Zhang, Yueqing
    Wang, Xingyu
    Xiao, Xudong
    Ji, Changge
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (24) : 9048 - 9055
  • [22] Toward rational protein crystallization: A Web server for the design of crystallizable protein variants
    Goldschmidt, Lukasz
    Cooper, David R.
    Derewenda, Zygmunt S.
    Eisenberg, David
    PROTEIN SCIENCE, 2007, 16 (08) : 1569 - 1576
  • [23] Flexible Backbone Sampling Methods to Model and Design Protein Alternative Conformations
    Ollikainen, Noah
    Smith, Colin A.
    Fraser, James S.
    Kortemme, Tanja
    METHODS IN PROTEIN DESIGN, 2013, 523 : 61 - 85
  • [24] Antibody modeling using the Prediction of ImmunoGlobulin Structure (PIGS) web server
    Paolo Marcatili
    Pier Paolo Olimpieri
    Anna Chailyan
    Anna Tramontano
    Nature Protocols, 2014, 9 : 2771 - 2783
  • [25] RNA-Redesign: a web server for fixed-backbone 3D design of RNA
    Yesselman, Joseph D.
    Das, Rhiju
    NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) : W498 - W501
  • [26] Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking
    Blaszczyk, Maciej
    Kurcinski, Mateusz
    Kouza, Maksim
    Wieteska, Lukasz
    Debinski, Aleksander
    Kolinski, Andrzej
    Kmiecik, Sebastian
    METHODS, 2016, 93 : 72 - 83
  • [27] Protein structure prediction on the Web: a case study using the Phyre server
    Kelley, Lawrence A.
    Sternberg, Michael J. E.
    NATURE PROTOCOLS, 2009, 4 (03) : 363 - 371
  • [28] RaptorX-Property: a web server for protein structure property prediction
    Wang, Sheng
    Li, Wei
    Liu, Shiwang
    Xu, Jinbo
    NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W430 - W435
  • [29] Protein structure prediction on the Web: a case study using the Phyre server
    Lawrence A Kelley
    Michael J E Sternberg
    Nature Protocols, 2009, 4 : 363 - 371
  • [30] MAESTROweb: a web server for structure-based protein stability prediction
    Laimer, Josef
    Hiebl-Flach, Julia
    Lengauer, Daniel
    Lackner, Peter
    BIOINFORMATICS, 2016, 32 (09) : 1414 - 1416